【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

【答案】大型標牌上端與下端之間的距離約為3.5m.

【解析】試題分析:將題目中的仰俯角轉(zhuǎn)化為直角三角形的內(nèi)角的度數(shù),分別求得CEBE的長,然后求得DE的長,用CE的長減去DE的長即可得到上端和下端之間的距離.

試題解析:

AB,CD 的延長線相交于點E,

∵∠CBE=45°,

CEAE,

CE=BE,

CE=16.65﹣1.65=15,

BE=15,

AE=AB+BE=20.

∵∠DAE=30°,

∴DE=11.54,

CD=CE﹣DE=15﹣11.54≈3.5 (m ),

答:大型標牌上端與下端之間的距離約為3.5m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】菱形有一個內(nèi)角是120°,其中一條對角線長為9,則菱形的邊長為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAC,ADABC的角平分線,DEABE,DFACF,則下列四個結(jié)論中:①DEDF;②AD上任意一點到AB,AC的距離相等;③∠BDE=∠CDF;④BDCDADBC,其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE

1)求證:△AED≌△DCA

2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線軸交于點,與軸交于點,與反比例函的圖象交于點,且

1)求點的坐標和反比例函數(shù)的解析式;

2)點軸上,反比例函數(shù)圖象上存在點,使得四邊形為平行四邊形,求M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點AB的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內(nèi)部不包括邊界上,且P到四邊形的兩個頂點的距離相等.

1在圖甲中畫出一個ABCD.

2在圖乙中畫出一個四邊形ABCD,使D=90°,且A90°注:圖甲、乙在答題紙上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,點EBC上的一點,連接AE并延長交射線DC于點F,將ABE沿直線AE翻折,點B落在點N處,AN的延長線交DC于點M,當AB2CF時,則NM的長為_____

查看答案和解析>>

同步練習冊答案