【題目】如圖,在△ABC 中,D、EF 分別為邊 AB、ACBC 上的點(diǎn),連接 DE、EF.若 DEBCEFAB,則圖中共有________對(duì)相似三角形.

【答案】3

【解析】

首先根據(jù)DEBC可以得出∠ADE=B,∠AED=C,然后根據(jù)EFAB可以得出∠FEC=A,∠EFC=B,利用以上條件再結(jié)合相似三角形判定定理進(jìn)一步求解即可.

DEBC,

∴∠ADE=B,∠AED=C

EFAB,

∴∠FEC=A,∠EFC=B,

在△ADE與△ABC中,

∵∠A=A,∠ADE=B,

∴△ADE~ABC,

在△ADE與△EFC中,

∵∠FEC=A,∠AED=C

∴△ADE~EFC,

在△ABC與△EFC中,

∵∠FEC=A,∠C=C,

∴△ABC~EFC,

綜上所述,共有三對(duì)相似三角形,

故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB8,AD10,ECD邊上一點(diǎn),連接AE,將矩形ABCD沿AE折疊,頂點(diǎn)D恰好落在BC邊上點(diǎn)F處,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)G

1)求線段CE的長(zhǎng);

2)如圖2,M,N分別是線段AGDG上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠DMN=∠DAM,設(shè)AMx,DNy

寫出y關(guān)于x的函數(shù)解析式,并求出y的最小值;

是否存在這樣的點(diǎn)M,使△DMN是等腰三角形?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)EBC的中點(diǎn),以C為圓心、CE為半徑作弧,交CD于點(diǎn)F,連接AEAF.若AB=2,B=60°,則陰影部分的面積為(  )

A.B.

C.2–πD.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點(diǎn),交x軸于C、D兩點(diǎn),連接AC、BC,已知A(0,3),C(﹣3,0).

(1)求拋物線的解析式;

(2)在拋物線對(duì)稱軸l上找一點(diǎn)M,使|MB﹣MD|的值最大,并求出這個(gè)最大值;

(3)點(diǎn)Py軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)PPQPAy軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與ABC相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為16元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤(rùn)=售價(jià)﹣制造成本)

1)寫出每月的利潤(rùn)z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2)如果廠商每月的制造成本不超過480萬元,那么當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線 yax2bx1 經(jīng)過 A(10)、B(13)兩點(diǎn).

1)求 a,b 的值;

2)以線段 AB 為邊作正方形 ABBA,能否將已知拋物線平移,使其經(jīng)過 A、B兩點(diǎn)?若能,求出平移后經(jīng)過 AB兩點(diǎn)的拋物線的解析式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EFAB上.

(1)求證:△AED∽△DCG;

(2)若矩形DEFG的面積為4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時(shí)經(jīng)過點(diǎn)P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點(diǎn)P為共享點(diǎn).

1)判斷y2x1y是否存在“共享函數(shù)”,如果存在,請(qǐng)求出“共享點(diǎn)”.如果不存在,請(qǐng)說明理由;

2)已知:整數(shù)m,nt滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.

3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案