【題目】某商店以6元/千克的價(jià)格購進(jìn)某種干果1140千克,并對其進(jìn)行篩選分成甲級干果與乙級干果后同時(shí)開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計(jì)中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價(jià)出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進(jìn)貨總金額.這批干果進(jìn)貨至賣完的過程中的損耗忽略不計(jì))

【答案】
(1)解:根據(jù)表中的數(shù)據(jù)可得

答:a、b的值分別是1、20


(2)解:甲級干果和乙級干果n天售完這批貨.

﹣n2+40n+n2+20n=1140

n=19,

當(dāng)n=19時(shí),y1=399,y2=741,

毛利潤=399×8+741×6﹣1140×6=798(元),

答:賣完這批干果獲得的毛利潤是798元


(3)解:設(shè)從第m天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克,則甲、乙級干果的銷售量為m天的銷售量減去m﹣1天的銷售量,

即甲級水果第m天所賣出的干果數(shù)量:(﹣m2+40m)﹣[﹣(m﹣1)2+40(m﹣1)]=﹣2m+41.

乙級水果第m天所賣出的干果數(shù)量:(m2+20m)﹣[(m﹣1)2+20(m﹣1)]=2m+19,

(2m+19)﹣(﹣2m+41)≥6,

解得:m≥7,

答:第7天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克


【解析】(1)根據(jù)表中的數(shù)據(jù)代入y2=at2+bt后,得到關(guān)于a,b的二元一次方程,從而可求出解.(2)設(shè)干果用n天賣完,根據(jù)兩個(gè)關(guān)系式和干果共有1140千克可列方程求解.然后用售價(jià)﹣進(jìn)價(jià),得到利潤.(3)設(shè)第m天乙級干果每天的銷量比甲級干果每天的銷量至少多6千克,從而可列出不等式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求回答問題:

(1)已知:△ABC是等腰三角形,其底邊是BC,點(diǎn)D在線段AB上,E是直線BC上一點(diǎn),且∠DEC=∠DCE,若∠A=60°(如圖①).求證:EB=AD;
(2)若將(1)中的“點(diǎn)D在線段AB上”改為“點(diǎn)D在線段AB的延長線上”,其它條件不變(如圖②),(1)的結(jié)論是否成立,并說明理由;
(3)若將(1)中的“若∠A=60°”改為“若∠A=90°”,其它條件不變,則 的值是多少?(直接寫出結(jié)論,不要求寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實(shí)數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個(gè)數(shù)為( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對球類運(yùn)動(dòng)的愛好情況,采用抽樣的方法,從足球、籃球、排球、其它等四個(gè)方面調(diào)查了若干名學(xué)生,并繪制成“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”.請你根據(jù)圖中提供的部分信息解答下列問題:

(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了名學(xué)生;
(2)“足球”所在扇形的圓心角是度;
(3)補(bǔ)全折線統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,立方體的六個(gè)面上標(biāo)著連續(xù)的整數(shù),若相對的兩個(gè)面上所標(biāo)之?dāng)?shù)的和相等.則這六個(gè)數(shù)的和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某品牌太陽能熱水器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架CD所在直線相交于水箱橫斷面⊙O的圓心O,支架CD與水平面AE垂直,AB=150厘米,∠BAC=30°,另一根輔助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的長度;(結(jié)果保留根號)
(2)求水箱半徑OD的長度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù): ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為 的正方形ABCD沿對角線AC平移,使點(diǎn)A移至線段AC的中點(diǎn)A′處,得新正方形A′B′C′D′,新正方形與原正方形重疊部分(圖中陰影部分)的面積是(
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長線與BC相交于點(diǎn)N.
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案