【題目】某報社為了解市民對大范圍霧霾天氣的成因、影響以及應(yīng)對措施的看法,做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:.非常了解;.比較了解;.基本了解;.不了解,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪了不完整的兩種統(tǒng)計圖表.請結(jié)合統(tǒng)計圖表,回答下列問題:

1)本次參與調(diào)查的市民共有  人,  ,  

2)統(tǒng)計圖中扇形的圓心角是  度,并補全條形統(tǒng)計圖;

3)某中學(xué)準(zhǔn)備開展關(guān)于霧霾的知識競賽,九(3)班班主任欲從2名男生和3名女生中任選2人參加比賽,求恰好選中“11女”的概率.(要求列表或畫樹狀圖)

【答案】140015,35;(2126,見解析;(3)見解析,

【解析】

1)先由C等級人數(shù)及其所占百分比求得總?cè)藬?shù),再根據(jù)百分比概念求解可得;
2)用360°乘以D選項的百分比可得;
3)列表得出所有等可能結(jié)果,再找到符合條件的結(jié)果,繼而根據(jù)概率公式求解可得.

解:(1)被調(diào)查的總?cè)藬?shù)為,

,即;

等級人數(shù)為

等級人數(shù)為,

,即,

故答案為:40015,35;

2)統(tǒng)計圖中扇形的圓心角是

補全圖形如下:

故答案為:126

3)列表得:

女,女

女,女

女,男

女,男

女,女

女,女

女,男

女,男

女,女

女,女

女,男

女,男

男,女

男,女

男,女

男,男

男,女

男,女

男,女

男,男

共有20種等可能的結(jié)果,恰好抽到1個男生和1個女生的有12種情況,

∴P(恰好選中“11”)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關(guān)系是   ;

②直線DG與直線BE之間的位置關(guān)系是   

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2ABAG2AE時,上述結(jié)論是否成立,并說明理由.

3)應(yīng)用:在(2)的情況下,連接BGDE,若AE1AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)組織了以奔向幸福,步如飛為主題的踢毽子比賽活動,初賽結(jié)束后有甲、乙兩個代表隊進(jìn)入決賽,已知每隊有5名隊員,按團(tuán)體總數(shù)排列名次,在規(guī)定時間內(nèi)每人踢100個以上(100)為優(yōu)秀.下表是兩隊各隊員的比賽成績.

1

2

3

4

5

總數(shù)

甲隊

103

102

98

100

97

500

乙隊

97

99

100

96

108

500

經(jīng)統(tǒng)計發(fā)現(xiàn)兩隊5名隊員踢毽子的總個數(shù)相等,按照比賽規(guī)則,兩隊獲得并列第一.學(xué)習(xí)統(tǒng)計知識后,我們可以通過考查數(shù)據(jù)中的其它信息作為參考,進(jìn)行綜合評定:

1)甲、乙兩隊的優(yōu)秀率分別為    ;

2)甲隊比賽數(shù)據(jù)的中位數(shù)為    個;乙隊比賽數(shù)據(jù)的中位數(shù)為    個;

3)分別計算甲、乙兩隊比賽數(shù)據(jù)的方差;

4)根據(jù)以上信息,你認(rèn)為綜合評定哪一個隊的成績好?簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四位同學(xué)在研究函數(shù)是常數(shù))時,甲發(fā)現(xiàn)當(dāng)時,函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)時,,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學(xué)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線經(jīng)過點

1)求滿足的關(guān)系式及的值;

2)當(dāng)時,求拋物線解析式,并直接寫出當(dāng)的取值范圍.

3)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍;

4)如圖,當(dāng)時,在第二象限的拋物線上找點,使的面積最大,求出點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點, 如果添加一個條件使ABE≌△CDF,則添加的條件不能是( 。

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點B的坐標(biāo)是(0,4),點D的坐標(biāo)是(8,4),點M和點N是兩個動點,其中點M從點B出發(fā),沿BA以每秒2個單位長度的速度做勻速運動,到點A后停止,同時點N從點B出發(fā),沿折線BCCD以每秒4個單位長度的速度做勻速運動,如果其中一個點停止運動,則另一點也停止運動,設(shè)MN兩點的運動時間為x,△BMN的面積為y,下列圖象中能表示yx的函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)和一次函數(shù)相交于點

1)求一次函數(shù)和反比例函數(shù)解析式;

2)連接OA,試問在x軸上是否存在點P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年的春節(jié),對于我們來說,有些不一樣,我們不能和小伙伴相約一起玩耍,不能去游樂場放飛自我,也不能和自己的兄弟姐妹一起吃美味的大餐,這么做,是因為我們每一個人都在面臨一個眼睛看不到的敵人,它叫病毒,殘酷的病毒會讓人患上肺炎,人與人的接觸會讓這種疾病快速地傳播開來,嚴(yán)重的還會有生命危險,目前我省已經(jīng)啟動突發(fā)公共衛(wèi)生事件一級應(yīng)急響應(yīng),但我們相信,只要大家一起努力,疫情終有會被戰(zhàn)勝的一天.

在這個不能出門的悠長假期里,某小學(xué)隨機對本校部分學(xué)生進(jìn)行假期中,我在家可以這么做!A.扎實學(xué)習(xí)、B.快樂游戲、C.經(jīng)典閱讀、D.分擔(dān)勞動、E.樂享健康的網(wǎng)絡(luò)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(若每一位同學(xué)只能選擇一項),請根據(jù)圖中的信息,回答下列問題.

(1)這次調(diào)查的總?cè)藬?shù)是   人;

(2)請補全條形統(tǒng)計圖,并說明扇形統(tǒng)計圖中E所對應(yīng)的圓心角是   度;

(3)若學(xué)校共有學(xué)生的1700人,則選擇C有多少人?

查看答案和解析>>

同步練習(xí)冊答案