【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2bxc交x軸于點(diǎn)A,B,點(diǎn)B的坐標(biāo)為(4,0),與y軸于交于點(diǎn)C(0,﹣2).
(1)求此拋物線的解析式;
(2)在拋物線上取點(diǎn)D,若點(diǎn)D的橫坐標(biāo)為5,求點(diǎn)D的坐標(biāo)及∠ADB的度數(shù);
(3)在(2)的條件下,設(shè)拋物線對(duì)稱軸交x軸于點(diǎn)H,△ABD的外接圓圓心為M(如圖1),
①求點(diǎn)M的坐標(biāo)及⊙M的半徑;
②過(guò)點(diǎn)B作⊙M的切線交于點(diǎn)P(如圖2),設(shè)Q為⊙M上一動(dòng)點(diǎn),則在點(diǎn)Q運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
【答案】(1);(2)點(diǎn)的坐標(biāo)為,45°;(3)①點(diǎn)的坐標(biāo)為,的半徑為;②在點(diǎn)運(yùn)動(dòng)過(guò)程中的值不變,其值為
【解析】
(1)將,代入解析式,求出解析式的系數(shù),即可得解;
(2)將代入解析式,求出,可得點(diǎn)坐標(biāo);令,求出A、B坐標(biāo),由勾股定理或兩點(diǎn)間距離公式求出AD、BD,再由面積法求出BH,從而求出∠ADB的正弦值,可知∠ADB的度數(shù);
(3)①由圓周角定理結(jié)合等腰直角三角形邊的關(guān)系求出點(diǎn)的坐標(biāo)和⊙的半徑;②證明QH和QP所在的△HMQ和△QMP相似即可.
(1)將,代入解析式得,,,
∴設(shè)拋物線的解析式為:
(2)當(dāng)時(shí),
∴點(diǎn)的坐標(biāo)為,
當(dāng)時(shí),或4,
∴,
如圖,連結(jié),作于,
∵,,,
∴,,
∵,
∴,
∴,
∴;
(3)①如圖,連接,,
∵,
∴,
∵,,
∴,
∴點(diǎn)的坐標(biāo)為,⊙的半徑為;
②如圖,連接,,
∵過(guò)點(diǎn)作⊙的切線交于點(diǎn),
∴,
∵,
∴,
∴,
∵,
∴,
∵,
∴∽,
∴,
∴在點(diǎn)運(yùn)動(dòng)過(guò)程中的值不變,其值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售部為了調(diào)動(dòng)銷售員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)銷售員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),該公司統(tǒng)計(jì)了銷售部每位銷售員在某月的銷售額(單位:萬(wàn)元),并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖.
圖1 圖2
(1)補(bǔ)全如圖1所示的統(tǒng)計(jì)圖;
(2)月銷售額在 萬(wàn)元的人數(shù)最多,該公司銷售部人均月銷售額是 萬(wàn)元;
(3)若想讓一半左右的銷售員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得S△PAB=S△DAB?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明用圖形計(jì)算器繪制了如圖所示的關(guān)于軸對(duì)稱的圖形,該圖形由左右兩側(cè)的兩段反比例函數(shù)圖象和構(gòu)成,點(diǎn)恰為的中點(diǎn),.
求左右兩側(cè)反比例函數(shù)的關(guān)系式(要求分別注明自變量的取值范圍);
平行于軸的直線與該圖形有三個(gè)交點(diǎn),請(qǐng)求出交點(diǎn)坐標(biāo);
請(qǐng)分別寫出直線與該圖形有兩個(gè)交點(diǎn)和沒(méi)有交點(diǎn)時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長(zhǎng)為半徑畫⊙C,點(diǎn)P在⊙C上運(yùn)動(dòng),連接AP,并將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AP′,點(diǎn)D是邊AC的中點(diǎn),連接DP′.在點(diǎn)P移動(dòng)的過(guò)程中,線段DP′長(zhǎng)度的最小值為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為的內(nèi)心,過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),若,,,則的長(zhǎng)為( )
A.3.5B.4C.5D.5.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店準(zhǔn)備購(gòu)進(jìn)一批電冰箱和空調(diào),每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商店用8000元購(gòu)進(jìn)電冰箱的數(shù)量與用6400元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)已知電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元.若商店準(zhǔn)備購(gòu)進(jìn)這兩種家電共100臺(tái),其中購(gòu)進(jìn)電冰箱x臺(tái)(33≤x≤40),那么該商店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com