【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長(zhǎng)為半徑畫⊙C,點(diǎn)P在⊙C上運(yùn)動(dòng),連接AP,并將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AP′,點(diǎn)D是邊AC的中點(diǎn),連接DP′.在點(diǎn)P移動(dòng)的過(guò)程中,線段DP′長(zhǎng)度的最小值為______cm.
【答案】
【解析】
通過(guò)畫圖發(fā)現(xiàn)P′的運(yùn)動(dòng)路線是以B為圓心,以1cm為半徑的圓,連接BD,由“三線合一”可得BD⊥AC,則當(dāng)點(diǎn)P′在BD上時(shí),DP′最小,利用勾股定理求得BD的長(zhǎng),即可求得DP′的長(zhǎng).
解:如圖以B為圓心,1cm長(zhǎng)為半徑畫⊙B,連接BD,
當(dāng)點(diǎn)P′在BD上時(shí),DP′最小,
∵△ABC是等邊三角形,D是AC中點(diǎn),AB=4cm,
∴BD⊥AC,AD=2cm,
∴cm,
∴DP′=BD﹣BP′=cm.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC(AC<AB<BC),請(qǐng)用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)在邊BC上確定一點(diǎn)P,使得PA+PC=BC;
(2)作出一個(gè)△DEF,使得:①△DEF是直角三角形;②△DEF的周長(zhǎng)等于邊BC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形的邊長(zhǎng)為4,是邊上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)作的垂線交于點(diǎn),以為邊作正方形,頂點(diǎn)在線段上,對(duì)角線,相交于點(diǎn).
(1)若,則 ;
(2)①求證:點(diǎn)一定在的外接圓上;
②當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)也隨之運(yùn)動(dòng),求點(diǎn)經(jīng)過(guò)的路徑長(zhǎng);
(3)在點(diǎn)從點(diǎn)到點(diǎn)的運(yùn)動(dòng)過(guò)程中,的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到邊的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)在距離地面米的懸崖點(diǎn)處垂直水平線搭建了一個(gè)懸崖秋千,秋千拉繩均由鋼管制作而成,當(dāng)游客乘坐該秋千時(shí),機(jī)器會(huì)將秋千拉至最高接近與地面平行的點(diǎn)處(此時(shí)) ,然后放下.該懸崖秋千以其驚險(xiǎn)刺激立即成為網(wǎng)紅打卡地.
若秋千放下秒后點(diǎn)的垂直距離為米,求秋千拉繩的長(zhǎng);
若某一時(shí)刻秋千蕩至與點(diǎn)水平距離相距米的點(diǎn)處,求的度數(shù),并求此時(shí)秋千底端距離懸崖底部多少米(結(jié)果保留整數(shù)參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2bxc交x軸于點(diǎn)A,B,點(diǎn)B的坐標(biāo)為(4,0),與y軸于交于點(diǎn)C(0,﹣2).
(1)求此拋物線的解析式;
(2)在拋物線上取點(diǎn)D,若點(diǎn)D的橫坐標(biāo)為5,求點(diǎn)D的坐標(biāo)及∠ADB的度數(shù);
(3)在(2)的條件下,設(shè)拋物線對(duì)稱軸交x軸于點(diǎn)H,△ABD的外接圓圓心為M(如圖1),
①求點(diǎn)M的坐標(biāo)及⊙M的半徑;
②過(guò)點(diǎn)B作⊙M的切線交于點(diǎn)P(如圖2),設(shè)Q為⊙M上一動(dòng)點(diǎn),則在點(diǎn)Q運(yùn)動(dòng)過(guò)程中的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F分別在邊AD,DC上,AB=6,DF=4,將矩形沿直線EF折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)G處,連接DG交EF于點(diǎn)H.
(1)求DE的長(zhǎng)度.
(2)求的值.
(3)若AB邊上有且只存在2個(gè)點(diǎn)P,使△APE與△BPG相似,請(qǐng)直接寫出邊AD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx﹣3的圖象與x軸分別相交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),與y軸的交點(diǎn)為C,動(dòng)點(diǎn)T在射線AB上運(yùn)動(dòng),在拋物線的對(duì)稱軸l上有一定點(diǎn)D,其縱坐標(biāo)為2,l與x軸的交點(diǎn)為E,經(jīng)過(guò)A、T、D三點(diǎn)作⊙M.
(1)求二次函數(shù)的表達(dá)式;
(2)在點(diǎn)T的運(yùn)動(dòng)過(guò)程中,
①∠DMT的度數(shù)是否為定值?若是,請(qǐng)求出該定值:若不是,請(qǐng)說(shuō)明理由;
②若MT=AD,求點(diǎn)M的坐標(biāo);
(3)當(dāng)動(dòng)點(diǎn)T在射線EB上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)M作MH⊥x軸于點(diǎn)H,設(shè)HT=a,當(dāng)OH≤x≤OT時(shí),求y的最大值與最小值(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由邊長(zhǎng)相等的小正方形組成的網(wǎng)格,以下各圖中點(diǎn)A、B、C、D都在格點(diǎn)上.
(1)在圖1中,PC:PB= ;
(2)利用網(wǎng)格和無(wú)刻度的直尺作圖,保留痕跡,不寫作法.
①如圖2,在AB上找點(diǎn)P,使得AP:PB=1:3;
②如圖3,在BC上找點(diǎn)P,使得△APB∽△DPC;
③如圖4,在△ABC中內(nèi)找一點(diǎn)P,連接PA、PB、PC,將△ABC分成面積相等的三部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)小球從斜坡的點(diǎn)O處拋出,小球的拋出路線可以用二次函數(shù)y=4x-x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯(cuò)誤的是( )
A.斜坡的坡度為1: 2
B.小球距O點(diǎn)水平距離超過(guò)4米呈下降趨勢(shì)
C.小球落地點(diǎn)距O點(diǎn)水平距離為7米
D.當(dāng)小球拋出高度達(dá)到7.5m時(shí),小球距O點(diǎn)水平距離為3m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com