【題目】如圖在中,,,是的平分線,交于點(diǎn),是的中點(diǎn),連接并延長交的延長線于點(diǎn),連接.
求證:(1);
(2)為等腰三角形
【答案】(1)見解析;(2)見解析
【解析】
(1)依據(jù)AB=AC,∠BAC=36°,可得∠ABC=72°,再根據(jù)BD是∠ABC的平分線,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依據(jù)E是AB的中點(diǎn),即可得到FE⊥AB;
(2)依據(jù)FE⊥AB,AE=BE,可得FE垂直平分AB,進(jìn)而得出∠BAF=∠ABF,依據(jù)∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根據(jù)∠AFC=∠ACB-∠CAF=36°,可得∠CAF=∠AFC=36°,進(jìn)而得到AC=CF.
證明:(1)∵AB=AC,∠BAC=36°,
∴∠ABC=72°,
又∵BD是∠ABC的平分線,
∴∠ABD=36°,
∴∠BAD=∠ABD,
∴AD=BD,
又∵E是AB的中點(diǎn),
∴DE⊥AB,即FE⊥AB;
(2)∵FE⊥AB,AE=BE,
∴FE垂直平分AB,
∴AF=BF,
∴∠BAF=∠ABF,
又∵∠ABD=∠BAD,
∴∠FAD=∠FBD=36°,
又∵∠ACB=72°,
∴∠AFC=∠ACB-∠CAF=36°,
∴∠CAF=∠AFC=36°,
∴AC=CF,即△ACF為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形沿直線折疊(點(diǎn)在邊上) ,折疊后頂點(diǎn)恰好落在邊上的點(diǎn)處,若,則的長是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,是邊上的一點(diǎn),連接,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,連接,若,,則的周長是( )
A.16B.15C.13D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示甲騎摩托車和乙駕駛汽車沿相同的路線行駛90千米,由A地到B地時(shí),行駛的路程y(千米)與經(jīng)過的時(shí)間x(小時(shí))之間的關(guān)系。請根據(jù)圖象填空:
(1)摩托車的速度為_____千米/小時(shí);汽車的速度為_____千米/小時(shí);
(2)汽車比摩托車早_____小時(shí)到達(dá)B地。
(3)在汽車出發(fā)后幾小時(shí),汽車和摩托車相遇?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)P在BC上,點(diǎn)Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長度;
(2)如圖2,當(dāng)點(diǎn)P在BC上移動(dòng)時(shí),求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a、b、c是正數(shù),下列各式,從左到右的變形不能用如圖驗(yàn)證的是( 。
A. (b+c)2=b2+2bc+c2
B. a(b+c)=ab+ac
C. (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
D. a2+2ab=a(a+2b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4.求證:AD∥BE.
證明:∵∠4=∠AFD( ),
∵∠3=∠4(已知),
∴∠3=∠ ( ).
∵∠1=∠2(已知),
∴∠1+∠3=∠2+∠AFD( ).
∴∠D=∠ ( ).
∴∠B=∠ ( ).
∴∠________=∠ ( ).
∴AD∥BE( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com