【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若CE=1,BC=6,求半圓O的半徑的長.

【答案】
(1)證明:連接OD.

∵OD=OB,

∴∠ODB=∠OBD.

∵AB=AC,

∴∠ACB=∠OBD.

∴∠ACB=∠ODB.

∴OD∥AC,

∴∠DEC=∠ODE.

∵DE⊥AC,

∴∠DEC=90°.

∴∠ODE=90°,即OD⊥DE,

∵DE過半徑OD的外端點(diǎn)D,

∴DE是⊙O的切線;


(2)解:連接AD.

∵AB為半圓O的直徑,

∴∠ADB=90°,

∵DE⊥AC,

∴∠DEC=∠ADB=90°.

∵AB=AC,BC=6,

∴CD=BD= BC=3,

又∵∠ECD=∠DBA,

∴△CED∽△BDA,

=

∵CE=1,

=

∴AB=9,

∴半圓O的半徑的長為4.5.


【解析】(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;(2)連接AD.由AB為半圓O的直徑,得到∠ADB=90°,根據(jù)垂直的定義得到∠DEC=∠ADB=90°.根據(jù)等腰三角形的性質(zhì)得到CD=BD= BC=3,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】利用相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(﹣4,0),B(0,3),動點(diǎn)P從點(diǎn)O出發(fā),沿x軸負(fù)方向以每秒1個單位的速度運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿射線BO方向以每秒2個單位的速度運(yùn)動,過點(diǎn)P作PC⊥AB于點(diǎn)C,連接PQ,CQ,以PQ,CQ為鄰邊構(gòu)造平行四邊形PQCD,設(shè)點(diǎn)P運(yùn)動的時間為t秒.
(1)當(dāng)點(diǎn)Q在線段OB上時,用含t的代數(shù)式表示PC,AC的長;
(2)在運(yùn)動過程中. ①當(dāng)點(diǎn)D落在x軸上時,求出滿足條件的t的值;
②若點(diǎn)D落在△ABO內(nèi)部(不包括邊界)時,直接寫出t的取值范圍;
(3)作點(diǎn)Q關(guān)于x軸的對稱點(diǎn)Q′,連接CQ′,在運(yùn)動過程中,是否存在某時刻使過A,P,C三點(diǎn)的圓與△CQQ′三邊中的一條邊相切?若存在,請求出t的值;若不存在,請說明理由.#D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時點(diǎn)燃甲乙兩根蠟燭,蠟燭燃燒剩下的長度y(cm)與燃燒時間x(min)的關(guān)系如圖所示.
(1)求乙蠟燭剩下的長度y與燃燒時間x的函數(shù)表達(dá)式;
(2)求點(diǎn)P的坐標(biāo),并說明其實(shí)際意義;
(3)求點(diǎn)燃多長時間,甲蠟燭剩下長度是乙蠟燭剩下長度的1.1倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接DE并延長至點(diǎn)F,使EF=DE,連接AF、DC.求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按如圖方式進(jìn)行擺放,∠1、2不一定互補(bǔ)的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE.將△EDC繞點(diǎn)C按順時針方向旋轉(zhuǎn),當(dāng)△EDC旋轉(zhuǎn)到A,D,E三點(diǎn)共線時,線段BD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組要測量山坡上的電線桿PQ的高度,他們在A處測得信號塔頂端P的仰角是45°,信號塔底端點(diǎn)Q的仰角為31°,沿水平地面向前走100米到B處,測得信號塔頂端P的仰角是68°,求信號塔PQ的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABEACF,EBAC于點(diǎn)M,FC于點(diǎn)D,ABFC于點(diǎn)N,∠E=∠F=90°,∠B=∠C,AE=AF.下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中,正確的是_________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水是人類的生命之源.為了鼓勵居民節(jié)約用水,相關(guān)部門實(shí)行居民生活用水階梯式計量水價政策.若居民每戶每月用水量不超過10立方米,每立方米按現(xiàn)行居民生活用水水價收費(fèi)(現(xiàn)行居民生活用水水價=基本水價+污水處理費(fèi));若每戶每月用水量超過10立方米,則超過部分每立方米在基本水價基礎(chǔ)上加價100%,每立方米污水處理費(fèi)不變.甲用戶4月份用水8立方米,繳水費(fèi)27.6元;乙用戶4月份用水12立方米,繳水費(fèi)46.3元.(注:污水處理的立方數(shù)=實(shí)際生活用水的立方數(shù))

(1)求每立方米的基本水價和每立方米的污水處理費(fèi)各是多少元?

(2)如果某用戶7月份生活用水水費(fèi)計劃不超過64元,該用戶7月份最多可用水多少立方米?

查看答案和解析>>

同步練習(xí)冊答案