【題目】如圖,RtABC中,∠ACB90°,AC6cmBC8cm,點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿AC運(yùn)動;同時點(diǎn)Q從點(diǎn)C出發(fā),以每秒2cm的速度沿CB運(yùn)動,當(dāng)Q到達(dá)點(diǎn)B時,點(diǎn)P同時停止運(yùn)動.

1)求運(yùn)動幾秒時△PCQ的面積為5cm2?

2)△PCQ的面積能否等于10cm2?若能,求出運(yùn)動時間,若不能,說明理由;

3)是否存在某個時刻t,使四邊形ABQP的面積最?若存在,求出運(yùn)動時間,若不能,說明理由.

【答案】1)經(jīng)過1秒后,△PCQ的面積等于5cm2;(2)不能,見解析;(3時,使四邊形ABQP的面積最小

【解析】

1)設(shè)運(yùn)動t秒后△PCQ的面積等于5cm2,分別表示出線段CP和線段CQ的長,再利用三角形的面積公式列出方程求解即可;

2)利用三角形的面積公式列出方程,得到的方程無實(shí)數(shù)解,說明△PCQ的面積不能等于10cm2;

3)表示出四邊形ABQP的面積,然后利用配方法求得其最小值即可.

1)設(shè)運(yùn)動t秒后△PCQ的面積等于5cm,

根據(jù)題意得:

CP=6t,QC=2t,

則△PCQ的面積是:CQCP=×(6t2t=5,

解得:t1=1,t2=5(舍去),

故經(jīng)過1秒后,△PCQ的面積等于5cm2;

2)若△PCQ的面積能否等于10cm2,則×(6t2t=10

化簡得: ,

所以方程無實(shí)數(shù)解,△PCQ的面積不能等于10cm2;

3=

因?yàn)?/span>>0,

所以四邊形ABQP的面積有最小值,

,

當(dāng)時,四邊形ABQP的面積有最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線與x 軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.

(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時點(diǎn)P的坐標(biāo).

(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于CD兩點(diǎn),與邊AC交于E點(diǎn),弦CFAB平行,與DO的延長線交于M點(diǎn).

1)求證:點(diǎn)MCF的中點(diǎn);

2)若E的中點(diǎn),BCa,

的弧長;

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,D為斜邊AB的中點(diǎn),∠B=60°,BC=2cm,動點(diǎn)E從點(diǎn)A出發(fā)沿AB向點(diǎn)B運(yùn)動,動點(diǎn)F從點(diǎn)D出發(fā),沿折線D﹣C﹣B運(yùn)動,兩點(diǎn)的速度均為1cm/s,到達(dá)終點(diǎn)均停止運(yùn)動,設(shè)AE的長為x,△AEF的面積為y,則yx的圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、B,拋物線y=﹣xm2+n的頂點(diǎn)P在直線y=﹣x+4上,與y軸交于點(diǎn)C(點(diǎn)PC不與點(diǎn)B重合),以BC為邊作矩形BCDE,且CD=2,點(diǎn)P、Dy軸的同側(cè).

1n=________(用含m的代數(shù)式表示),點(diǎn)C的縱坐標(biāo)是________(用含m的代數(shù)式表示);

2)當(dāng)點(diǎn)P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應(yīng)的函數(shù)解析式;

3)直接寫出矩形BCDE有兩個頂點(diǎn)落在拋物線上時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)民也能報銷醫(yī)療費(fèi)了!”這是國家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.

根據(jù)以上信息,解答以下問題:

(1)本次調(diào)查了 名村民,被調(diào)查的村民中,有 人參加合作醫(yī)療得到了返回款?

(2)若該鄉(xiāng)有10000名村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長率相同,求年平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD中,ABCD,∠B=90°AC=AD.動點(diǎn)P從點(diǎn)B出發(fā)沿折線B-A-D-C方向以1單位/秒的速度運(yùn)動,在整個運(yùn)動過程中,△BCP的面積S與運(yùn)動時間t(秒)的函數(shù)圖象如圖2所示,則AD等于( 。

A. 10B. C. 8D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項(xiàng)點(diǎn)與另一個三角形的直角頂點(diǎn)A重合,若三角形ABC固定,當(dāng)另一個三角形繞點(diǎn)A旋轉(zhuǎn)時,它的角邊和斜邊所在的直線分別與邊BC交于點(diǎn)E、F,設(shè)BF=CE=關(guān)于的函數(shù)圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,DE分別是AB、BC的中點(diǎn),點(diǎn)FAC上,且滿足∠AFE=A,DMEFAC于點(diǎn)M.

1)證明:DM=DA;

2)如圖2,點(diǎn)GBE上,且∠BDG=C,求證:DEG∽△ECF

3)在圖2中,取CE上一點(diǎn)H,使得∠CFH=B,若BG=3,求EH的長.

查看答案和解析>>

同步練習(xí)冊答案