【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
【答案】(1)①B(1,0)②(2)4,P(-2,3);(3)存在M1(0,2),M2(-3,2), M3(2,-3),M4(5,-18), 使得以點 A、M、N為頂點的三角形與△ABC相似.
【解析】試題分析:(1)①先求的直線y=x+2與x軸交點的坐標,然后利用拋物線的對稱性可求得點B的坐標;②設拋物線的解析式為y=y=a(x+4)(x﹣1),然后將點C的坐標代入即可求得a的值;
(2)設點P、Q的橫坐標為m,分別求得點P、Q的縱坐標,從而可得到線段PQ=-m2﹣2m,然后利用三角形的面積公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面積的最大值以及此時m的值,從而可求得點P的坐標;
(3)首先可證明△ABC∽△ACO∽△CBO,然后分以下幾種情況分類討論即可:①當M點與C點重合,即M(0,2)時,△MAN∽△BAC;②根據(jù)拋物線的對稱性,當M(﹣3,2)時,△MAN∽△ABC; ④當點M在第四象限時,解題時,需要注意相似三角形的對應關系.
試題解析:(1)①y=x+2
當x=0時,y=2,當y=0時,x=﹣4,
∴C(0,2),A(﹣4,0),
由拋物線的對稱性可知:點A與點B關于x=﹣對稱,
∴點B的坐標為(1,0).
②∵拋物線y=ax2+bx+c過A(﹣4,0),B(1,0),
∴可設拋物線解析式為y=a(x+4)(x﹣1),
又∵拋物線過點C(0,2),
∴2=﹣4a
∴a=-
∴y=-x2-x+2.
(2)設P(m,-m2-m+2).
過點P作PQ⊥x軸交AC于點Q,
∴Q(m,m+2),
∴PQ=-m2-m+2﹣(m+2)
=-m2﹣2m,
∵S△PAC=×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴當m=﹣2時,△PAC的面積有最大值是4,
此時P(﹣2,3).
(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下圖:
①當M點與C點重合,即M(0,2)時,△MAN∽△BAC;
③ 根據(jù)拋物線的對稱性,當M(﹣3,2)時,△MAN∽△ABC;
④ 當點M在第四象限時,設M(n,-n2-n+2),則N(n,0)
∴MN=n2+n﹣2,AN=n+4
當時,MN=AN,即n2+n﹣2=(n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
當時,MN=2AN,即n2+n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
綜上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以點A、M、N為頂點的三角形與△ABC相似.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1為搭建在地面上的遮陽棚,圖2、圖3是遮陽棚支架的示意圖.遮陽棚支架由相同的菱形和相同的等腰三角形構成,滑塊E,H可分別沿等長的立柱AB,DC上下移動,AF=EF=FG=1m.
(1)若移動滑塊使AE=EF,求∠AFE的度數(shù)和棚寬BC的長.
(2)當∠AFE由60°變?yōu)?/span>74°時,問棚寬BC是增加還是減少?增加或減少了多少?(結果精確到0.1m.參考數(shù)據(jù):≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學習用品,于是立即下樓騎自行車,沿小玲行進的路線,勻速去追小玲,媽媽追上小玲將學習用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關系如圖所示(小玲和媽媽上、下樓以及媽媽交學習用品給小玲耽擱的時間忽略不計).當媽媽剛回到家時,小玲離學校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)請用尺規(guī)作圖法作底角∠ABC的平分線BD,交AC于點D(保留作圖痕跡,不要求寫作法);
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線經(jīng)過,兩點,拋物線與軸的另一交點為.
(1)求拋物線的解析式;
(2)若點為第一象限內(nèi)拋物線上一點,設四邊形的面積為,求的最大值;
(3)若是線段上一動點,在軸上是否存在這樣的點,使為等腰三角形且為直角三角形?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x+3與x軸的一個交點為點A,與y軸的交點為點B,拋物線的對稱軸l與x軸交于點,與線段AB交于點E,點D是對稱軸l上一動點.
(1)點A的坐標是 ,點B的坐標是 ;
(2)是否存在點D,使得△BDE和△ACE相似?若存在,請求出點D的坐標,若不存在,請說明理由;
(3)如圖2,拋物線的對稱軸l向右平移與線段AB交于點F,與拋物線交于點G,當四邊形DEFG是平行四邊形且周長最大時,求出點G的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,與x軸交于兩點A,B(點A在點B的左側),與y軸交于點C.
(Ⅰ)求點A,B和點C的坐標;
(Ⅱ)已知P是線段上的一個動點.
①若軸,交拋物線于點Q,當取最大值時,求點P的坐標;
②求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,PA是過正方形頂點A的直線,作DE⊥PA于E,將射線DE繞點D逆時針旋轉45°與直線PA交于點F.
(1)如圖1,當∠PAD=45°時,點F恰好與點A重合,則的值為 ;
(2)如圖2,若45°<∠PAD<90°,連接BF、BD,試求的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com