【題目】拋物線經(jīng)過(guò)點(diǎn),且對(duì)稱(chēng)軸為直線,其部分圖象如圖所示對(duì)于此拋物線有如下四個(gè)結(jié)論:①;②;③;④若,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值其中正確結(jié)論的個(gè)數(shù)是( )
A.B.C.D.
【答案】D
【解析】
①根據(jù)拋物線開(kāi)口方向、對(duì)稱(chēng)軸、與y軸的交點(diǎn)即可判斷;
②根據(jù)拋物線的對(duì)稱(chēng)軸方程即可判斷;
③根據(jù)拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,0),且對(duì)稱(chēng)軸為直線x=-1可得拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-3,0),即可判斷;
④根據(jù)m>n>0,得出m-1和n-1的大小及其與-1的關(guān)系,利用二次函數(shù)的性質(zhì)即可判斷.
解:①觀察圖象可知:
a<0,b<0,c>0,
∴abc>0,故①正確;
②∵對(duì)稱(chēng)軸為直線x=-1,
即,解得b=2a,即2a-b=0,故②正確;
③∵拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,0),且對(duì)稱(chēng)軸為直線x=-1,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(-3,0),
當(dāng)a=-3時(shí),y=0,即9a-3b+c=0,故③正確;
∵m>n>0,
∴m-1>n-1>-1,
由x>-1時(shí),y隨x的增大而減小知x=m-1時(shí)的函數(shù)值小于x=n-1時(shí)的函數(shù)值,故④正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,給出下列四個(gè)結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點(diǎn),EG⊥AF,FH⊥CE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( )
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.
填空: ①的值為 ;②∠DBE的度數(shù)為 .
(2)類(lèi)比探究
如圖2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說(shuō)明理由.
(3)拓展延伸
如面3,在(2)的條件下,將點(diǎn)D改為直線AB上一動(dòng)點(diǎn),其余條件不變,取線段DE的中點(diǎn)M,連接BM、CM,若AC=2,則當(dāng)△CBM是直角三角形時(shí),線段BE的長(zhǎng)是多少?請(qǐng)直接寫(xiě)出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫(xiě)出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形的邊在軸負(fù)半軸上,點(diǎn)在第三象限內(nèi),點(diǎn)的坐標(biāo)為,經(jīng)過(guò)點(diǎn)的拋物線交軸于點(diǎn),其頂點(diǎn)為.
(1)求拋物線的解析式;
(2)若軸左側(cè)拋物線上一點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo);
(3)連接,,,請(qǐng)你探究在軸左側(cè)的拋物線上,是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)是,為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn),拋物線的對(duì)稱(chēng)軸是直線.
(1)求拋物線的函數(shù)表達(dá)式和直線的解析式;
(2)若點(diǎn)在第二象限內(nèi),且,求的面積;
(3)在(2)的條件下,若為直線上一點(diǎn),是否存在點(diǎn),使為等腰三角形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與軸相交于點(diǎn),連接、.
(1)與之間的關(guān)系式為: ;
(2)判斷線段和之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)設(shè)點(diǎn)是拋物線上、之間的動(dòng)點(diǎn),連接,,當(dāng)時(shí):
①若,求點(diǎn)的坐標(biāo);
②若,且的最大值為,請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于及一個(gè)矩形給出如下定義:如果上存在到此矩形四份頂點(diǎn)距離都相等的點(diǎn),那么稱(chēng)是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,頂點(diǎn)在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點(diǎn)在直線上,且是矩形的“等距圓”,那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com