【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為,在山坡的坡頂D處測得鐵架頂端A的仰角為,(1)求小山的高度;(2)求鐵架的高度。(結(jié)果保留根號)

【答案】小山的高度為25米,鐵架的高度為米.

【解析】試題分析:

試題解析:(1)利用坡度先求出小三高度.(2) 證明△ADE≌△BDF全等,利用勾股定理鐵架的高度.

DDFBC,交BC于點F,

∵小山的坡面坡度為1 ,即tanDBF=,

∴∠DBF=30°,又∠ADE=60°,AED=90°

∴∠DAE=30°,

∵∠CBA=CAB=45°,

∴∠CBA-DBF=CAB-DAE,即∠DAB=DBA,

DB=DA,

ADEBDF中,

∵∠DAE=DBF=30°,AEDBFD90°,ADBD,

∴△ADE≌△BDFAAS),AE=BF,在RtBDF中,∠DBF=30°,BD=50米,

DF=0.5BD=25米,

根據(jù)勾股定理得:BF=米,則小山的高度為25米,鐵架的高度為米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游,從家出發(fā)0.5小時后到達甲地,游玩一段時間后,按原速前往乙地,小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地.如圖是他們離家的路程ykm)與小明離家時間xh)的函數(shù)圖象,已知媽媽駕車速度是小明的3倍.

下列說法正確的有( 。﹤

①小明騎車的速度是20km/h,在甲地游玩1小時

②小明從家出發(fā)小時后被媽媽追上

③媽媽追上小明時離家25千米

④若媽媽比小明早10分鐘到達乙地,則從家到乙地30km

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB = AC,點D、E分別是AB、AC的中點,點FBE、CD的交點,請寫出圖中兩組全等的三角形,并選出其中一組加以證明.(要求:寫出證明過程中的重要依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高考英語聽力測試期間,需要杜絕考點周圍的噪音,如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點突發(fā)火災,消防隊必須立即趕往救火,已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.取1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ΔABC內(nèi)接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長線于點D.

(1)若EBD的中點,連結(jié)CE,試判斷CE與⊙O的位置關(guān)系.

(2)若AC=3CD,求∠A的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調(diào)查的學生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為2的正方形OABC在平面直角坐標系中的位置如圖所示,點D是邊OA的中點,連接CD,點E在第一象限,且DEDC,DE=DC.以直線AB為對稱軸的拋物線過C,E兩點.

(1)求拋物線的解析式;

(2)點P從點C出發(fā),沿射線CB每秒1個單位長度的速度運動,運動時間為t秒.過點P作PFCD于點F,當t為何值時,以點P,F(xiàn),D為頂點的三角形與COD相似?

(3)點M為直線AB上一動點,點N為拋物線上一動點,是否存在點M,N,使得以點M,N,D,E為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠A=D=90°,點EF在線段BC上,DEAF交于點O,且AB=DCBE=CF.求證:

1AF=DE

2)若OPEF,求證:OP平分∠EOF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa≠0)交x軸正半軸于點A,直線y2x經(jīng)過拋物線的頂點M.已知該拋物線的對稱軸為直線x2,交x軸于點B

1)求M點的坐標及a,b的值;

2P是第一象限內(nèi)拋物線上的一點,且在對稱軸的右側(cè),連接OP,BP.設(shè)點P的橫坐標為m,OBP的面積為S,當m為多少時,s

查看答案和解析>>

同步練習冊答案