【題目】如圖,在ABC中,AB=AC,以AB為直徑作半圓O,交BC于點(diǎn)D,連接AD、過點(diǎn)D作DEAC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.

(1)求證:EF是O的切線;

(2)求證:FDB∽△FAD;

(3)如果O的半徑為5,sinADE=,求BF的長(zhǎng).

【答案】(1)證明見解析(2)證明見解析(3)

【解析】

試題分析:(1)連接OD,AB為0的直徑得ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為ABC的中位線,所以O(shè)DAC,而DEAC,則ODDE,然后根據(jù)切線的判定方法即可得到結(jié)論;

(2)利用兩角對(duì)應(yīng)相等的兩三角形相似進(jìn)行證明即可.

(3)由DAC=DAB,根據(jù)等角的余角相等得ADE=ABD,在RtADB中,利用解直角三角形的方法可計(jì)算出AD=8,在RtADE中可計(jì)算出AE=,然后由ODAE,得FDO∽△FEA,再利用相似比可計(jì)算出BF.

試題解析:(1)證明:連接OD,如圖,

AB為0的直徑,

∴∠ADB=90°,

ADBC,

AB=AC,

AD平分BC,即DB=DC,

OA=OB,

OD為ABC的中位線,

ODAC,

DEAC,

ODDE,

EF是0的切線;

(2)證明:EF是O的切線,

∴∠ODB+BDF=90°,

OD=OB,

∴∠OBD=ODB,

∴∠OBD+BDF=90°,

AB是O的直徑,

∴∠ADB=90°,

∴∠DAB+OBD=90°,

∴∠DAB=BDF,

∵∠BFD=DFA,

∴△FDB∽△FAD;

(3)∵∠DAC=DAB,

∴∠ADE=ABD,

在RtADB中,sinADE=sinABD=,而AB=10,

AD=8,

在RtADE中,sinADE=

AE=,

ODAE,

∴△FDO∽△FEA,

,

BF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)一元二次方程:M:N:,其中,以下列四個(gè)結(jié)論中,錯(cuò)誤的是( )

A、如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;

B、如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同;

C、如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根;

D、如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,如果斜邊上的中線CD=4cm,那么斜邊AB=________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(﹣2,y1),(﹣1,y2),(1,y3)都在直線y=4x+2上,則y1,y2,y3的值的大小關(guān)系是( 。

A. y3<y1<y2 B. y1<y2<y3 C. y3>y1>y2 D. y1>y2>y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組數(shù)據(jù)為邊長(zhǎng),能構(gòu)成三角形的是:

A. 4,4,8 B. 2,4,7 C. 4,8,8 D. 2,2,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為10厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過幾秒后,BPECQP全等?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(x+3)2+|﹣y+2|=0,則xy的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)數(shù)的絕對(duì)值等于5,則這個(gè)數(shù)是__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如:min={1,﹣2}=﹣2,min{﹣1,2}=﹣1.則min{x2﹣1,﹣2}的值是(
A.x2﹣1
B.2
C.﹣1
D.﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案