【題目】如圖,P、Q分別是⊙O的內(nèi)接正五邊形的邊AB、BC上的點,BP=CQ,則∠POQ= .
【答案】72°
【解析】解:連接OA、OB、OC,
∵五邊形ABCDE是⊙O的內(nèi)接正五邊形,
∴∠AOB=∠BOC=72°,
∵OA=OB,OB=OC,
∴∠OBA=∠OCB=54°,
在△OBP和△OCQ中,
,
∴△OBP≌△OCQ,
∴∠BOP=∠COQ,
∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,
∴∠BOP=∠QOC,
∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,
∴∠POQ=∠BOC=72°.
故答案為:72°.
連接OA、OB、OC,根據(jù)正五邊形的性質(zhì)得出∠AOB=∠BOCOA=OB,OB=OC,可證明∠OBA=∠OCB,再證明△OBP≌△OCQ,得出∠BOP=∠COQ,再證明∠POQ=∠BOC,即可得出答案。
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.
(1)求證:k取任何實數(shù)值,方程總有實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地之間的路程為2380米,甲、乙兩人分別從A、B兩地出發(fā),相向而行,已知甲先出發(fā)5分鐘后,乙才出發(fā),他們兩人在A、B之間的C地相遇,相遇后,甲立即返回A地,乙繼續(xù)向A地前行.甲到達A地時停止行走,乙到達A地時也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,則乙到達A地時,甲與A地相距的路程是米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖像與軸相交于點,與軸相交于點.
(1)求點坐標和點坐標;
(2)點是線段上一點,點為坐標原點,點在第二象限,且四邊形為菱形,求點坐標;
(3)在(2)的條件下,點為平面直角坐標系中一點,以、、、為頂點的四邊形是平行四邊形,請直接寫出所有滿足條件的點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個邊長不定的正方形ABCD,它的兩個相對的頂點A,C分別在邊長為1的正六邊形一組平行的對邊上,另外兩個頂點B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+bx+c圖象的頂點坐標為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點為A,M是這個二次函數(shù)圖象上的點,O是原點.
(1)不等式b+2c+8≥0是否成立?請說明理由;
(2)設(shè)S是△AMO的面積,求滿足S=9的所有點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com