【題目】如圖,AB是⊙O的直徑,點C、D在圓上,,過點CCEAD延長線于點E

1)求證:CE是⊙O的切線;

2)若BC3,AC4,求CEAD的長.

【答案】1)見解析;(2CE=,AD=.

【解析】

1)連接OC,OAOC,則∠OCA=∠OAC,再由已知條件,可得∠OCE90°

2)由CE是⊙O的切線,得∠DCE=∠CAE=∠CAB,從而求得△CDE∽△ABC,△ACE∽△ABC,根據(jù)相似三角形對應邊成比例即可求得.

解:(1)連接OC,

OAOC,

∴∠OCA=∠OAC,

,

DCBC,

∴∠BAC=∠CAD

∴∠OCA=∠CAD,

OCAE

∵∠E90°

∴∠OCE90°,

OCCE,

CE是⊙O的切線;

2)∵CE是⊙O的切線,

∴∠DCE=∠CAE=∠CAB,

AB是⊙O的直徑,

∴∠ACB90°,

∴∠ACB=∠E,

∴△CDE∽△ABC,△ACE∽△ABC,

,

BC3,AC4

AB5,CD3,

,

CE,EDAE,

ADAEED

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,,的弦,于點,過點的切線交的延長線于點,連接并延長交的延長線于點.

1)求證:的切線;

2)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點AB為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;

第二步:連接OA,OB;

第三步:以O為圓心,OA長為半徑作⊙O,交lP1P2;

所以圖中P1,P2即為所求的點.

1)在圖②中,連接P1A,P1B,證明∠AP1B=30°;

2)如圖③,用直尺和圓規(guī)在矩形ABCD內作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

3)已知矩形ABCD,若BC=2AB=m,PAD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:如圖,過圓外一點作圓的切線.

已知:P為⊙O外一點.

求作:經(jīng)過點P的⊙O的切線.

小敏的作法如下:如圖,

(1)連接OP,作線段OP的垂直平分線MNOP于點C.

(2)以點C為圓心,CO的長為半徑作圓,交⊙OA,B兩點.

(3)作直線PAPB.

所以直線PA,PB就是所求作的切線.

老師認為小敏的作法正確.

請回答:

(1)連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_________.

(2)如果⊙O的半徑等于3,點P到切點的距離為4,求點A與點B之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC為等邊三角形, M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉60°到△CAN的位置.

(1)如圖①,若∠BMC=120°BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.

(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=2x2﹣4x﹣6.

(1)求這個二次函數(shù)圖象的頂點坐標及對稱軸;

(2)指出該圖象可以看作拋物線y=2x2通過怎樣平移得到?

(3)在給定的坐標系內畫出該函數(shù)的圖象,并根據(jù)圖象回答:當x取多少時,yx增大而減;當x取多少時,y<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點A,B的坐標分別為A4,0),B4,3),動點N,P分別從點BA同時出發(fā),點N1單位/秒的速度向終點C運動,點P5/4單位/秒的速度向終點C運動,連結NP,設運動時間為t秒(0t4

1)直接寫出OA,AB,AC的長度;

2)求證:CPN∽△CAB

3)在兩點的運動過程中,若點M同時以1單位/秒的速度從點O向終點A運動,求MPN的面積S與運動的時間t的函數(shù)關系式(三角形的面積不能為0),并直接寫出當S時,運動時間t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應新舊動能轉換.提高公司經(jīng)濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經(jīng)過市場調研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600;每臺售價為45萬元時,年銷售量為550.假定該設備的年銷售量y(單位:)和銷售單價(單位:萬元)成一次函數(shù)關系.

(1)求年銷售量與銷售單價的函數(shù)關系式;

(2)根據(jù)相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?

查看答案和解析>>

同步練習冊答案