【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OAOB為直徑作半圓,則圖中陰影部分的面積為_____

【答案】﹣1

【解析】

試題假設(shè)出扇形半徑,再表示出半圓面積,以及扇形面積,進(jìn)而即可表示出兩部分P,Q面積相等.連接AB,OD,根據(jù)兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=SAOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結(jié)論.

解:扇形OAB的圓心角為90°,扇形半徑為2,

扇形面積為:cm2),

半圓面積為:×π×12=cm2),

∴SQ+SM =SM+SP=cm2),

∴SQ=SP,

連接ABOD,

兩半圓的直徑相等,

∴∠AOD=∠BOD=45°,

∴S綠色=SAOD=×2×1=1cm2),

陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1cm2).

故答案為:﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克的西瓜到市場(chǎng)去銷(xiāo)售,在銷(xiāo)售了部分西瓜之后,余下的每千克降價(jià)0.4元,全部售完,銷(xiāo)售金額與西瓜的千克數(shù)之間的關(guān)系如圖所示,那么小李賺了( )

A. 32B. 36C. 38D. 44

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣++2與x軸相交于A,B兩點(diǎn),(點(diǎn)A在B點(diǎn)左側(cè))與y軸交于點(diǎn)C.

(1)求A,B兩點(diǎn)坐標(biāo).

(2)連結(jié)AC,若點(diǎn)P在第一象限的拋物線上,P的橫坐標(biāo)為t,四邊形ABPC的面積為S.試用含t的式子表示S,并求t為何值時(shí),S最大.

(3)在(2)的基礎(chǔ)上,在整條拋物線上和對(duì)稱軸上是否分別存在點(diǎn)G和點(diǎn)H,使以A,G,H,P四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出G,H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, , , 的平分線相交于點(diǎn)E,過(guò)點(diǎn)E于點(diǎn)F,那么EF的長(zhǎng)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年春北方嚴(yán)重干旱,某社區(qū)人畜飲水緊張,每天需從社區(qū)外調(diào)運(yùn)飲用水120噸,有關(guān)部門(mén)緊急部署,從甲、乙兩水廠調(diào)運(yùn)飲用水到社區(qū)供水點(diǎn),甲廠每天最多可調(diào)出80噸,乙廠每天最多可調(diào)出90噸,從兩水廠運(yùn)水到社區(qū)供水點(diǎn)的路程和運(yùn)費(fèi)如下表:


到社區(qū)供水點(diǎn)的路程(千米)

運(yùn)費(fèi)(元/·千米)

甲廠

20

12

乙廠

14

15

1】若某天調(diào)運(yùn)水的總運(yùn)費(fèi)為26700元,則從甲、乙兩水廠各調(diào)運(yùn)多少噸飲用水?

2】設(shè)從甲廠調(diào)運(yùn)飲用水噸,總運(yùn)費(fèi)為W元,試寫(xiě)出W關(guān)于與的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線x=對(duì)稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點(diǎn),與y軸交于C(0,5),直線ly軸交于點(diǎn)D.

(1)求拋物線的函數(shù)表達(dá)式;

(2)設(shè)直線l與拋物線的對(duì)稱軸的交點(diǎn)為F,G是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),若,且BCGBCD面積相等,求點(diǎn)G的坐標(biāo);

(3)若在x軸上有且僅有一點(diǎn)P,使∠APB=90°,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,、相交于點(diǎn)于點(diǎn).

1)求證:;

2)求證:,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,□ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,連接DE

(1)求證:BDE是直角三角形;

(2)如果OECD,試判斷BDEDCE是否相似,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案