【題目】如圖,在△ABC中,AB=AC,D是BC邊的中點,點E,F分別在AD及其延長線上,且CE∥BF,連接BE,CF.
(1)求證:四邊形EBFC是菱形;
(2)若BD=4,BE=5,求四邊形EBFC的面積.
【答案】(1)見解析;(2)24.
【解析】
(1)由D是BC邊的中點,CE∥BF,利用ASA易證得△BDF≌△CDE,即可得CE=BF,然后由一組對邊平行且相等的四邊形是平行四邊形,證得四邊形BFCE是平行四邊形;
由AB=AC,D是BC邊的中點,即可得AD⊥BC,又由四邊形BFCE是平行四邊形,根據(jù)對角線互相垂直的平行四邊形是菱形,即可證得四邊形BFCE是菱形.
(2)求出BC、EF即可解決問題;
(1)證明:∵D是BC邊的中點,
∴BD=CD,
∵CE∥BF,
∴∠DBF=∠ECD,
在△BDF和△CDE中,
,
∴△BDF≌△CDE(ASA),
∴CE=BF,
又∵CE∥BF,
∴四邊形BFCE是平行四邊形;
∵AB=AC,D是BC的中點,
∴AD⊥BC,
又∵四邊形BFCE是平行四邊形,
∴四邊形BFCE是菱形.
(2)解:在Rt△BDE中,BE=5,BD=4,
∴DE==3,
∵四邊形BECF是菱形,
∴EF=2DE=6,BC=2BD=8,
∴菱形BECF的面積=×6×8=24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;
(2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形,,,, …按如圖所示的方式放置.點,,,…和點,,…分別在直線和軸上,已知點,,則點的坐標(biāo)是 ,點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1,y1),點Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,下圖①為點P,Q的“相關(guān)矩形”的示意圖.
已知點A的坐標(biāo)為(1,0),
(1)若點B的坐標(biāo)為(3,1),求點A,B的“相關(guān)矩形”的面積;
(2)點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達式;
(3)若點D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點A,D的“相關(guān)矩形”沒有公共點時,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當(dāng)點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-x2+2x+3與x軸相交于A.B兩點(點A在B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A,B,C三點的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF//DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m:
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com