【題目】如圖,四條直線l1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,過點A1A1A2x軸,交l1于點A2,再過點A2A2A3l1l2于點A3,再過點A3A3A4l2y軸于點A4,則點A2017坐標為________

【答案】((2016,0)

【解析】

先利用各直線的解析式得到x軸、l1、l2、y軸、l3、l4依次相交為30的角,各點的位置是每12個一循環(huán),由于2017=168×12+1,則可判定點A2017x軸的正半軸上,再規(guī)律得到OA2016=(2015,然后表示出點A2017坐標.

解:∵l1:y1=x,l2:y2=x,l3:y3=-x,l4:y4=-﹣x,
x軸、l1、l2、y軸、l3、l4依次相交為30的角,
2017=168×12+1,
∴點A2017x軸的正半軸上,
OA2==
OA3=(2,
OA4=(3,

OA2017=(2016,
∴點A2017坐標為(2016,0).
故答案為((2016,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.

根據(jù)以上方程與函數(shù)的關系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.

佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接寫出m的值,并畫出函數(shù)圖象;

(2)根據(jù)表格和圖象可知,方程的解有   個,分別為   ;

(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點上正方處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達式.已知點與球網(wǎng)的水平距離為,球網(wǎng)的高度為

1)當時,的值.通過計算判斷此球能否過網(wǎng).

2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點的水平距離為,離地面的高度為處時,乙扣球成功,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知:如圖1,ABC中,分別以AB、AC為一邊向ABC外作正方形ABGEACHF,直線ANBCN,若EPANPFQANQ.判斷線段EP、FQ的數(shù)量關系,并證明;

(2)如圖2,梯形ABCD中,ADBC,分別以兩腰AB、CD為一邊向梯形ABCD外作正方形ABGEDCHF,線段AD的垂直平分線交線段AD于點M,交BC于點N,若EPMNP,FQMNQ.(1)中結論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學10人,身高在160厘米以上的女同學3人,乙班80人,其中身高在160厘米以上的男同學20人,身高在160厘米以上的女同學8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,拋物線與x軸的交點坐標是________,拋物線與y軸的交點坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】①對角線互相垂直且相等的平行四邊形是正方形;

②平行四邊形、矩形、等邊三角形、正方形既是中心對稱圖形,也是軸對稱圖形;

③旋轉和平移都不改變圖形的形狀和大;

④底角是45°的等腰梯形,高是h,則腰長是h;

⑤一組對邊平行,另一組對邊相等的四邊形是平行四邊形.

以上正確的命題是(

A. ①②③④ B. ①②④ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學玩摸球游戲,游戲規(guī)則如下:

先由甲同學從中隨機摸出一球,記下球號,并放回攪勻,再由乙同學從中隨機摸出一球,記下球號。將甲同學摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問:這個游戲公平嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖,則方程ax2+bx+c=m有實數(shù)根的條件是

查看答案和解析>>

同步練習冊答案