【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】(1)證明見解析;(2)∠ACB=96°或114°;(3).
【解析】
試題分析:(1)根據(jù)完美分割線的定義只要證明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.
(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時(shí),②如圖3中,當(dāng)AD=AC時(shí),③如圖4中,當(dāng)AC=CD時(shí),分別求出∠ACB即可.
(3)設(shè)BD=x,利用△BCD∽△BAC,得,列出方程即可解決問題.
試題解析:(1)如圖1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD為等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割線.
(2)①當(dāng)AD=CD時(shí),如圖2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.
②當(dāng)AD=AC時(shí),如圖3中,∠ACD=∠ADC=(180°-48°)÷2=66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.
③當(dāng)AC=CD時(shí),如圖4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍棄,∴∠ACB=96°或114°.
(3)由已知AC=AD=2,∵△BCD∽△BAC,∴設(shè)BD=x,∴),∵x>0,∴x=,∵△BCD∽△BAC,∴=,∴CD=×2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)被抹去x軸、y軸及原點(diǎn)O的網(wǎng)格圖,網(wǎng)格中每個(gè)小正方形的邊長均為1個(gè)單位長度,三角形ABC的各頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,若記點(diǎn)A的坐標(biāo)為(﹣1,3),點(diǎn)C的坐標(biāo)為(1,﹣1).
(1)請?jiān)趫D中找出x軸、y軸及原點(diǎn)O的位置;
(2)把△ABC向下平移2個(gè)單位長度,再向右平移3個(gè)單位長度,請你畫出平移后的△A1B1C1 , 若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P1的坐標(biāo)是;
(3)試求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無法判定△ADF≌△CBE的是( )
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若將該拋物線繞原點(diǎn)旋轉(zhuǎn)180°,請直接寫出旋轉(zhuǎn)后的拋物線函數(shù)表達(dá)式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,將△ABC進(jìn)行位似變換得到△A1B1C1.
(1)△A1B1C1與△ABC的位似比是 ;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)設(shè)點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),則依上述兩次變換后,點(diǎn)P在△A2B2C2內(nèi)的對應(yīng)點(diǎn)P2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一副三角板的兩個(gè)直角頂點(diǎn)重合在一起.
(1)若∠EON=140°,求∠MOF的度數(shù);
(2)比較∠EOM與∠FON的大小,并寫出理由;
(3)求∠EON+∠MOF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com