如圖,在Rt△ABC的斜邊BC上截取CD=CA,過(guò)點(diǎn)D作DE⊥BC,交AB于E,則下列結(jié)論一定正確的是


  1. A.
    AE=BE
  2. B.
    DB=DE
  3. C.
    AE=BD
  4. D.
    ∠BCE=∠ACE
D
分析:推出∠A=∠CDE=90°,根據(jù)HL推出Rt△CAE≌Rt△CDE,根據(jù)全等三角形的性質(zhì)即可判斷各個(gè)項(xiàng).
解答:A、∵DE⊥BC,∠A=90°,
∴∠A=∠CDE=90°,
在Rt△CAE和Rt△CDE中
,
∴Rt△CAE≌Rt△CDE(HL),
∴AE=DE,
在R△BED中,BE>DE,即BE>AE,故本選項(xiàng)錯(cuò)誤;
B、根據(jù)已知不能得出BD=DE,故本選項(xiàng)錯(cuò)誤;
C、根據(jù)已知不能得出BD=DE,由DE=AE,即不能推出BD=AE,故本選項(xiàng)錯(cuò)誤;
D、∵Rt△CAE≌Rt△CDE,
∴∠BCE=∠ACE,即D選項(xiàng)正確;
故選D.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和角平分線定義,注意:全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案