精英家教網(wǎng)如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC、BC,過A、B、C三點作拋物線.
(1)求點C的坐標及拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,求點D的坐標;并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD,若存在,請求出點P的坐標,若不存在,請說明理由.
分析:(1)已知了A、B兩點的坐標即可得出OA、OB的長,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的長,即可得出C點的坐標.然后用待定系數(shù)法即可求出拋物線的解析式;
(2)本題的關(guān)鍵是得出D點的坐標,CD平分∠BCE,如果連接O′D,那么根據(jù)圓周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐標為(4,-5).根據(jù)B、D兩點的坐標即可用待定系數(shù)法求出直線BD的解析式;
(3)本題要分兩種情況進行討論:
①過D作DP∥BC,交D點右側(cè)的拋物線于P,此時∠PDB=∠CBD,可先用待定系數(shù)法求出直線BC的解析式,然后根據(jù)BC與DP平行,那么直線DP的斜率與直線BC的斜率相同,因此可根據(jù)D的坐標求出DP的解析式,然后聯(lián)立直線DP的解析式和拋物線的解析式即可求出交點坐標,然后將不合題意的舍去即可得出符合條件的P點.
②同①的思路類似,先作與∠CBD相等的角:在O′B上取一點N,使BN=BM.可通過證△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一樣,先求直線DN的解析式,進而可求出其與拋物線的交點即P點的坐標.綜上所述可求出符合條件的P點的值.
解答:解:(1)∵以AB為直徑作⊙O′,交y軸的負半軸于點C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
OA
OC
=
OC
OB

又∵A(-1,0),B(9,0),
1
OC
=
OC
9
,
解得OC=3(負值舍去).
∴C(0,-3),
故設拋物線解析式為y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),解得a=
1
3
,
∴二次函數(shù)的解析式為y=
1
3
(x+1)(x-9),
即y=
1
3
x2-
8
3
x-3.

(2)∵AB為O′的直徑,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0),
∵點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,
∴∠BCD=
1
2
∠BCE=
1
2
×90°=45°,
連接O′D交BC于點M,
則∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
1
2
AB=5.
∴O′D⊥x軸
∴D(4,-5).
∴設直線BD的解析式為y=kx+b,
9k+b=0
4k+b=-5

解得
k=1
b=-9

∴直線BD的解析式為y=x-9.
∵C(0,-3),精英家教網(wǎng)
設直線BC的解析式為:y=ax+b,
b=-3
9a+b=0
,
解得:
b=-3
a=
1
3

∴直線BC的解析式為:y=
1
3
x-3.


(3)假設在拋物線上存在點P,使得∠PDB=∠CBD,
解法一:設射線DP交⊙O′于點Q,則
BQ
=
CD

分兩種情況(如圖所示):
①∵O′(4,0),D(4,-5),B(9,0),C(0,-3).
∴把點C、D繞點O′逆時針旋轉(zhuǎn)90°,使點D與點B重合,則點C與點Q1重合,
因此,點Q1(7,-4)符合
BQ
=
CD
,
∵D(4,-5),Q1(7,-4),
∴用待定系數(shù)法可求出直線DQ1解析式為y=
1
3
x-
19
3

解方程組
y=
1
3
x-
19
3
y=
1
3
x2-
8
3
x-3

x1=
9-
41
2
y1=
-29-
41
6
x2=
9+
41
2
y2=
-29+
41
6

∴點P1坐標為(
9+
41
2
-29+
41
6
),坐標為(
9-
41
2
,
-29-
41
6
)不符合題意,舍去.
②∵Q1(7,-4),
∴點Q1關(guān)于x軸對稱的點的坐標為Q2(7,4)也符合
BQ
=
CD

∵D(4,-5),Q2(7,4).
∴用待定系數(shù)法可求出直線DQ2解析式為y=3x-17.
解方程組
y=3x-17
y=
1
3
x2-
8
3
x-3

x1=3
y1=-8
,
x2=14
y2=25

∴點P2坐標為(14,25),坐標為(3,-8)不符合題意,舍去.
∴符合條件的點P有兩個:P1
9+
41
2
,
-29+
41
6
),P2(14,25).
解法二:分兩種情況(如圖所示):
精英家教網(wǎng)①當DP1∥CB時,能使∠PDB=∠CBD.
∵B(9,0),C(0,-3).
∴用待定系數(shù)法可求出直線BC解析式為y=
1
3
x-3.
又∵DP1∥CB,
∴設直線DP1的解析式為y=
1
3
x+n.
把D(4,-5)代入可求n=-
19
3
,
∴直線DP1解析式為y=
1
3
x-
19
3

解方程組
y=
1
3
x-
19
3
y=
1
3
x2-
8
3
x-3

x1=
9-
41
2
y1=
-29-
41
6
x2=
9+
41
2
y2=
-29+
41
6

∴點P1坐標為(
9+
41
2
,
-29+
41
6
)或(
9-
41
2
,
-29-
41
2
)(不符合題意舍去).
②在線段O′B上取一點N,使BN=DM時,得△NBD≌△MDB(SAS),
∴∠NDB=∠CBD.
由①知,直線BC解析式為y=
1
3
x-3.
取x=4,得y=-
5
3

∴M(4,-
5
3
),
∴O′N=O′M=
5
3

∴N(
17
3
,0),
又∵D(4,-5),
∴直線DN解析式為y=3x-17.
解方程組
y=3x-17
y=
1
3
x2-
8
3
x-3

x1=3
y1=-8
,
x2=14
y2=25

∴點P2坐標為(14,25),坐標為(3,-8)不符合題意,舍去.
∴符合條件的點P有兩個:P1
9+
41
2
-29+
41
6
),P2(14,25).
解法三:分兩種情況(如圖所示):
①求點P1坐標同解法二.精英家教網(wǎng)
②過C點作BD的平行線,交圓O′于G,
此時,∠GDB=∠GCB=∠CBD.
由(2)題知直線BD的解析式為y=x-9,
又∵C(0,-3)
∴可求得CG的解析式為y=x-3,
設G(m,m-3),作GH⊥x軸交于x軸與H,
連接O′G,在Rt△O′GH中,利用勾股定理可得,m=7,
由D(4,-5)與G(7,4)可得,
DG的解析式為y=3x-17,
解方程組
y=3x-17
y=
1
3
x2-
8
3
x-3

x1=3
y1=-8
,
x2=14
y2=25

∴點P2坐標為(14,25),坐標為(3,-8)不符合題意舍去.
∴符合條件的點P有兩個:P1
9+
41
2
,
-29+
41
6
),P2(14,25).
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似及全等、探究角相等的構(gòu)成情況等知識點,綜合性強,考查學生分類討論,數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點F的坐標為(3,0),點A,B分別是某函數(shù)圖象與x軸、y軸的交點,點P是此圖象上的一動點.設點P的橫坐標為x,PF的長為d,且d與x之間滿足關(guān)系:d=5-
35
x(0≤x≤5),給出以下四個結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3.其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A的坐標為(0,1),點B的坐標為(
3
2
,-2),點P在直線y=-x上運動,當|PA-PB|最大時點P的坐標為(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A的坐標為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點C、D.若AB=3BD,以點C為圓心,CA的
5
4
倍的長為半徑作圓,則該圓與x軸的位置關(guān)系是
 
(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點B的坐標為(6,9),點A的坐標為(6,6),點P為⊙A上一動點,PB的延長線交⊙A于點N、直線CD⊥AP于點C,交PN于點D,交⊙A于E、F兩點,且PC:CA=2:3.
(1)當點P運動使得點E為劣弧
PN
的中點時,求證:DF=DN;
(2)在(1)的條件下求tan∠CDP的值;
(3)當⊙A的半徑為5,且△APD的面積取得最大值時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A的坐標為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
3
x
的圖象與線段OA、AB分別交于點C、D.若以點C為圓心,CA的k倍的長為半徑作圓,該圓與x軸相切,則k的值為
3+
3
4
3+
3
4

查看答案和解析>>

同步練習冊答案