【題目】如圖,點(diǎn)A和點(diǎn)B分別在x軸和y軸上,且OA=OB=4,直線BC交x軸于點(diǎn)C,S△BOC=S△ABC.
(1)求直線BC的解析式;
(2)在直線BC上求作一點(diǎn)P,使四邊形OBAP為平行四邊形(尺規(guī)作圖,保留痕跡,不寫(xiě)作法).
【答案】(1);(2)見(jiàn)解析.
【解析】
(1)根據(jù)三角形面積公式得到OC=AC= OA=2,則C(2,0),然后利用待定系數(shù)法求直線BC的解析式;
(2)當(dāng)AP⊥x軸時(shí),AP∥OB,利用OC=AC可得到AP=OB,根據(jù)平行四邊形的判定方法可得到四邊形OBAP為平行四邊形,于是過(guò)點(diǎn)A作x軸的垂線交直線BC于P即可.
(1)依題意,A(4,0),B(0,4),
因?yàn)?/span>S△BOC=S△ABC,所以,C為OA中點(diǎn),所以,C(2,0),
設(shè)直線BC的解析式為:,則有
,所以,k=-2,b=4,
直線BC的解析式為:
(2)過(guò)點(diǎn)A作AP垂直x軸,交BC的延長(zhǎng)線于P,連結(jié)OP,點(diǎn)P為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王玩游戲,一張紙片,第一次將其撕成四小片,以后每次都將其中一片撕成更小的四片,如此進(jìn)行下去,當(dāng)小王撕到第n次時(shí),手中共有s張紙片.
(1)當(dāng)小王撕了3次時(shí),他手中有幾張紙?
(2)用含有n的代數(shù)式表示s,并求小王要得到82張紙片需撕多少次?
(3)小王說(shuō):“我撕了若干次后,手中的紙片有2019張”,小王說(shuō)的對(duì)不對(duì)?若不對(duì),請(qǐng)說(shuō)出你的理由;若對(duì)的,請(qǐng)指出小王需撕多少次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在數(shù)軸上標(biāo)出表示,的點(diǎn),并比較大。 (填,);
(2)如圖,,是有理數(shù),比較大。 (填,);
(3)請(qǐng)借助數(shù)軸說(shuō)明為什么“兩個(gè)負(fù)數(shù)中,絕對(duì)值大的反而小”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將沿直線平移到的位置,連接、.
(1)如圖1,寫(xiě)出線段與的關(guān)系__________;
(2)如圖1,求證:;
(3)如圖2,當(dāng)是邊長(zhǎng)為2的等邊三角形時(shí),以點(diǎn)為原點(diǎn),所在的直線為軸建立平面直角坐標(biāo)系.求出點(diǎn)的坐標(biāo),使得以、、、為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要開(kāi)展校園藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛(ài)的歌曲、舞蹈、小品、相聲四類(lèi)節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:
(1)本次共調(diào)查了_________名學(xué)生.
(2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于_________度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖(并標(biāo)注頻數(shù)).
(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)小品的人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法,其中正確的有( 。
①如果a大于b,那么a的倒數(shù)小于b的倒數(shù);②若a與b互為相反數(shù),則=﹣;③幾個(gè)有理數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);④如果mx=my,那么x=y,
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)計(jì)調(diào)查問(wèn)卷時(shí),下列提問(wèn)是否合適?如果不合適的話應(yīng)該怎樣改進(jìn)?
(1)你上學(xué)時(shí)使用的交通工具是
.汽車(chē).摩托車(chē).步行.其他
(2)你對(duì)老師的教學(xué)滿意嗎?
.比較滿意.滿意.非常滿意.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com