精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,A(- 1,5)B(- 1,0),C(- 4,3)

1)求出△ABC的面積;

2)在圖中作出△ABC關于軸的對稱圖形△A1B1C1;

3)設Py軸上的點,要使得點P到點A,C的距離和最小,求點P的坐標.

【答案】1;(2)見解析;(3

【解析】

1)根據三角形的面積公式可得答案;

2)根據關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數可得點A1B1,C1的坐標;

3)連接AC1,利用待定系數法求AC1所在直線解析式,令x=0即可得出答案.

1ABC的面積=×5×3;

2)如圖所示:

A1B1C1即為所求.

3)根據題意得,A-1,5),C14,3

連接AC1y軸于點P

AC1所在直線解析式為:y=kx+b,

A-15),C14,3)代入y=kx+b得:

,

解得,,

AC1所在直線解析式為:,

x=0,則y=

P0,.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標;

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點CCDAFAF延長線于點D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABMN兩點,DMEN相交于點F

1)若△CMN的周長為15cm,求AB的長;

2)若∠MFN=70°,求∠MCN的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉,三角板的兩邊分別交邊AB、CD于點G、F.

(1)求證:△GBE∽△GEF.

(2)設AG=x,GF=y,求Y關于X的函數表達式,并寫出自變量取值范圍.

(3)如圖2,連接ACGF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數不超過40,每件提成4元;若當日攪件數超過40,超過部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數和乙公司攪件員人均攬件數的條形統(tǒng)計圖:

(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數超過40(不含40)的概率;

(2)根據以上信息,以今年四月份的數據為依據,并將各公司攬件員的人均攬件數視為該公司各攬件員的

攬件數,解決以下問題:

①估計甲公司各攬件員的日平均件數;

②小明擬到甲、乙兩家公司中的一家應聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AC4,BC3AB5,AD為△ABC的角平分線,則CD的長度為( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點C在線段AB上,(點C不與AB重合),分別以AC、BC為邊在AB同側作等邊三角形ACD和等邊三角形BCE,連接AEBD交于點P

1)觀察猜想:①線段AEBD的數量關系為_________;②APC的度數為_______________

2)數學思考:如圖2,當點C在線段AB外時,(1)中的結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明

3)拓展應用:如圖3,分別以AC、BC為邊在AB同側作等腰直角三角形ACD和等腰直角三角形BCE,其中ACD=∠BCE=90°CA=CD,CB=CE,連接AE=BD交于點P,則線段AEBD的關系為________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知BC是⊙O的直徑,點DBC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

同步練習冊答案