【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),一次函數(shù)的圖象經(jīng)過點B(2,1).
(1)求一次函數(shù)的解析式;
(2)請直接寫出不等式組1<kx +b<2x的解集。
【答案】(1)一次函數(shù)的解析式為y=x+1;(2)x>1
【解析】
(1)由點A的縱坐標(biāo)利用正比例函數(shù)圖象上點的坐標(biāo)特征可求出點A的坐標(biāo),根據(jù)點A、B的坐標(biāo),利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)根據(jù)一次函數(shù)的性質(zhì)結(jié)合點B的坐標(biāo)可得出不等式-1<x+1的解集為x>-2,再根據(jù)兩函數(shù)圖象的上下位置關(guān)系,即可得出不等式組-1<x+1<2x的解集為x>1.
解:(1)∵點A(m,2)在正比例函數(shù)y=2x的圖象上,
∴2=2m,解得:m=1,
∴點A的坐標(biāo)為(1,2)
將A(1,2)、B(2,1)代入y=kx+b,
解得:k=b=1
∴一次函數(shù)的解析式為y=x+1
(2) )∵在y=x+1中,1>0,
∴y值隨x值的增大而增大,
∴不等式-1<x+1的解集為x>-2.
觀察函數(shù)圖象可知,當(dāng)x>1時,一次函數(shù)y=x+1的圖象在正比例函數(shù)y=2x的圖象的下方,
∴不等式組-1<x+1<2x的解集為x>1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的解析式是,則下列說法正確的是( )
A. 拋物線的對稱軸是直線 B. 拋物線的頂點坐標(biāo)是 C. 該二次函數(shù)有最小值 D. 當(dāng)時,隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,垂足為點,是外角的平分線,,垂足為點,連接交于點.
求證:四邊形為矩形;
當(dāng)滿足什么條件時,四邊形是一個正方形?并給出證明.
在的條件下,若,求正方形周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
已知:如圖(1),在平面直角坐標(biāo)系中,點,,分別在坐標(biāo)軸上,且,的面積為,點從點出發(fā)沿軸負(fù)方向以個單位長度/秒的速度向下運(yùn)動,連接,,點為上的中點.
(1)直接寫出坐標(biāo)___________,___________,___________.
(2)設(shè)點運(yùn)動的時間為秒,問:當(dāng)與垂直且相等時,求此時的值?并說明理由.
(3)如圖(2),在第四象限內(nèi)有一動點,連接,,,點在第四象限內(nèi)運(yùn)動,當(dāng),判斷是否平分,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE內(nèi)部時,
①寫出圖中一對全等的三角形,并寫出它們的所有對應(yīng)角;
②設(shè)的度數(shù)為x,∠的度數(shù)為,那么∠1,∠2的度數(shù)分別是多少?(用含有x或y的代數(shù)式表示)
③∠A與∠1、∠2之間有一種數(shù)量關(guān)系始終保持不變,請找出這個規(guī)律.
(2)如圖2,把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE外部時,∠A與∠1、∠2的數(shù)量關(guān)系是否發(fā)生變化?如果發(fā)生變化,求出∠A與∠1、∠2的數(shù)量關(guān)系;如果不發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,為的中點,過點且分別交于,交于,點是的中點,且,則下列結(jié)論:;;四邊形為菱形;.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為和的兩個正方形和并排放在一起,連結(jié)并延長交于點,交于點,則
A. B. 2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為中點,過點的直線分別與,交于點,,連接交于點,連接,.若,,則下列結(jié)論:
①,;
②;
③四邊形是菱形;
④.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com