7.若$\frac{1}{a}$>a,則a的取值范圍是0<a<1或a<-1..

分析 0不能做分母,所以a不能為0,然后從a>0,a<0兩個角度考慮a的取值范圍.

解答 解:由題意,a≠0
①當a>0時,a2<1,即a2-1<0
解得-1<a<1
由于a>0,所以0<a<1;
②當a<0時,1<a2即a2-1>0
解得:a>1或a<-1
由于a<0,所以a<-1.
綜上a的取值范圍是a<-1,0<a<1.
故答案為:0<a<1或a<-1.

點評 本題考查了倒數(shù)、不等式的解法.解決本題的關鍵是根據(jù)a進行分類討論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

2.若|x+1|+|y-$\frac{1}{2}$|=0,那么x-y=$-\frac{3}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

3.已知m-2n=3,則$\frac{1}{4}$m2+n2-mn+2的值為$\frac{17}{4}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.把如圖甲的一個長為2a,寬為2b的長方形,沿虛線剪成四個一樣大小的小長方形,再按圖乙拼成一個較大的正方形.
(1)用兩種方法表示圖乙中陰影部分的面積,寫出由此得到的一個等式;
(2)請你利用(1)中所得的等式解決以下問題:已知x,y為實數(shù),且x-y=3,xy=4,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

2.如圖,等腰Rt△ABC(∠C=90°)與正方形MNPQ中,AC=MN=4,點A從M點位置出發(fā)向右運動,直到C與N點重合為止,設△ABC與正方形MNPQ的重疊部分面積為y,MA=x,則y與x之間的函數(shù)解析式為:y=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}(0<x≤4)}\\{-\frac{1}{2}{x}^{2}+4x(4<x≤8)}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖,AO=BO=2,∠AOB=90°,△A′、C、D分別與點A重合,在邊BO上、在邊BO的延長線上,且A′C=A′D=$\sqrt{5}$,將△A′CD沿射線OB平移,設平移距離為x(其中0<x<3),平移后的圖形與△ABO重疊部分的面積為S.
(1)求tanD的值;
(2)求S關于x的函數(shù)關系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,有一塊矩形鋼板ABCD,先截去了一個直角三角形AEF,得到一個五邊形EBCDF,已知AB=200cm,BC=160cm,AE=60cm,AF=40cm,要從這塊鋼板上再截出一塊矩形板料,如何設計才能使矩形板料的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.如圖,在矩形ABCD中,AB=3,AD=4,若以點A為圓心,以4為半徑作⊙A,則點A,點B,點C,點D四點中在⊙A外的是C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

17.最小的合數(shù)與最小的素數(shù)的最小公倍數(shù)是4.

查看答案和解析>>

同步練習冊答案