【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸l為x=﹣1.
(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱(chēng)軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ , )
【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對(duì)稱(chēng)軸為即可得到拋物線的解析式;
(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);
②,表示出來(lái)得到二次函數(shù),求得最值即可.
試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸l為,∴,解得: ,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);
(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x, ),
①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);
②設(shè)P(x,y),則,∵
=OBOC+ADPD+ (PD+OC)OD==
===,
∴當(dāng)x=時(shí), =,當(dāng)x=時(shí), =,此時(shí)P(, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動(dòng)中,八年級(jí)數(shù)學(xué)興趣小組的同學(xué)進(jìn)行了如下的課外實(shí)踐活動(dòng).具體內(nèi)容如下:在一段筆直的公路上選取兩點(diǎn)A、B,在公路另一側(cè)的開(kāi)闊地帶選取一觀測(cè)點(diǎn)C,在C處測(cè)得點(diǎn)A位于C點(diǎn)的南偏西45°方向,且距離為100米,又測(cè)得點(diǎn)B位于C點(diǎn)的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時(shí),興趣小組在觀察中測(cè)得一輛小轎車(chē)經(jīng)過(guò)該路段用時(shí)13秒.
(1)請(qǐng)你幫助他們算一算,這輛小車(chē)是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計(jì)算結(jié)果保留兩位小數(shù)).
(2)請(qǐng)你以交通警察叔叔的身份對(duì)此小轎車(chē)的行為作出處理意見(jiàn),并就鄉(xiāng)村公路安全管理提出自己的建議。(處理意見(jiàn)合情合理,建議盡量全面。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:如圖1,若,則.
理由:如圖,過(guò)點(diǎn)作,
則.
因?yàn)?/span>,
所以,
所以,
所以.
交流:(1)若將點(diǎn)移至圖2所示的位置,,此時(shí)、、之間有什么關(guān)系?請(qǐng)說(shuō)明理由.
探究:(2)在圖3中,,、又有何關(guān)系?
應(yīng)用:(3)在圖4中,若,又得到什么結(jié)論?請(qǐng)直接寫(xiě)出該結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,E為正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),且CE=AC,AE交CD于點(diǎn)F,那么∠AFC的度數(shù)為( )
A. 112.5° B. 125° C. 135° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn),是的邊上一點(diǎn),經(jīng)平移后得到,點(diǎn)的對(duì)應(yīng)點(diǎn)為.
(1)畫(huà)出平移后的,寫(xiě)出點(diǎn)的坐標(biāo);
(2)的面積為_________________;
(3)若點(diǎn)是軸上一動(dòng)點(diǎn),的面積為,求與之間的關(guān)系式(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠CAB=2∠B,AE平分∠CAB,CD⊥AB于D,AC=3,AD=1.下列結(jié)論:①∠AEC=∠CAB;②EF=CE;③AC=AE;④BD=4;
正確的是___________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為邊上的中線,∥,且,連接.
(1)求證:四邊形為菱形;
(2)連接,若平分,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn),且與軸的一個(gè)交點(diǎn)為.
(1)求拋物線的表達(dá)式;
(2)是拋物線與軸的另一個(gè)交點(diǎn),點(diǎn)的坐標(biāo)為,其中,△的面積為.
①求的值;
②將拋物線向上平移個(gè)單位,得到拋物線.若當(dāng)時(shí),拋物線與軸只有一個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com