【題目】中央電視臺舉辦的“中國詩詞大會”節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了解該校九年級學(xué)生對觀看“中國詩詞大會”節(jié)目的喜愛程度,對該校九年級部分學(xué)生進行了隨機抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為:A 級(非常喜歡),B 級(較喜歡),C 級(一般),D 級(不喜歡).請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 , 表示“D級(不喜歡)”的扇形的圓心角為°;
(2)若該校九年級有200名學(xué)生.請你估計該年級觀看“中國詩詞大會”節(jié)目B 級(較喜歡)的學(xué)生人數(shù);
(3)若從本次調(diào)查中的A級(非常喜歡)的5名學(xué)生中,選出2名去參加廣州市中學(xué)生詩詞大會比賽,已知A級學(xué)生中男生有3名,請用“列表”或“畫樹狀圖”的方法求出所選出的2名學(xué)生中至少有1名女生的概率.

【答案】
(1)50;21.6
(2)解: ,

答:估計該年級觀看“中國詩詞大會”節(jié)目B 級(較喜歡)的學(xué)生人數(shù)為100.


(3)解:畫樹狀圖如下:

由樹狀圖可以,抽取2名學(xué)生,共有20種等可能的結(jié)果,其中至少有1名女生的結(jié)果有14種,

∴P2名學(xué)生中至少有1名女生)= =


【解析】(1)本次抽樣調(diào)查的樣本容量是17÷34%=50, 表示“D級(不喜歡)”的扇形的圓心角為 ×360°=21.6°,
所以答案是:50,21.6;
【考點精析】通過靈活運用總體、個體、樣本、樣本容量和扇形統(tǒng)計圖,掌握所要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量(樣本容量沒有單位);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(km)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示.

(1)求甲、乙相遇時,乙所行駛的路程;

(2)當乙到達終點A時,甲還需多少分鐘到達終點B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D為碼頭,A,B兩個燈塔與碼頭的距離相等,DA,DB為海岸線,一輪船離開碼頭,計劃沿∠ADB的平分線航行,在航行途中C點處,測得輪船與燈塔A和燈塔B的距離相等.試問:輪船航行是否偏離指定航線?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖,在直角三角形ABC中,BAC=90°,ADBC于點D,可知:BAD=C(不需要證明);

特例探究:如圖,MAN=90°,射線AE在這個角的內(nèi)部,點B、C在MAN的邊AM、AN上,且AB=AC, CFAE于點F,BDAE于點D.證明:ABD≌△CAF;

歸納證明:如圖,點BC在MAN的邊AM、AN上,點EF在MAN內(nèi)部的射線AD上,1、2分別是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求證:ABE≌△CAF;

拓展應(yīng)用:如圖,在ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,1=2=BAC.若ABC的面積為15,則ACF與BDE的面積之和為 .(12分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=ax+b(a≠0)的圖象與y軸相交于點A,與反比例函數(shù)y2= (c≠0)的圖象相交于點B(3,2)、C(﹣1,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出y1>y2時x的取值范圍;
(3)在y軸上是否存在點P,使△PAB為直角三角形?如果存在,請求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則下列4個結(jié)論::①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④點M(x1 , y1)、N(x2 , y2)在拋物線上,若x1<x2 , 則y1≤y2 , 其中正確結(jié)論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+4x軸、y軸分別交于點A、點B,點Dy軸的負半軸上,若將DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.

(1)求AB的長和點C的坐標;

(2)求直線CD的解析式;

(3)y軸上是否存在一點P,使得SPAB=,若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數(shù),它的圖象與x軸的交點A在原點左邊,交點B在原點右邊.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)點C為此二次函數(shù)圖象上的一點,且滿足△ABC的面積等于10,請求出點C的坐標.

查看答案和解析>>

同步練習(xí)冊答案