【題目】如圖,在矩形ABCD中,,,點E是射線BC上一動點,將沿AE翻折得到,延長AF交CD的延長線于點G,當(dāng)時,線段DG的長為______.
【答案】或8
【解析】
情形①如圖當(dāng)點E在線段BC上時,設(shè)EF交AD于K.情形②如圖當(dāng)點E在線段BC的延長線上時,設(shè)EF交AD于K.分別求解即可解決問題.
情形①如圖當(dāng)點E在線段BC上時,設(shè)EF交AD于K.
∵BC=6,BE=3EC,
∴EC=,EB=EF=,
∵四邊形ABCD是矩形,
∴∠ADC=∠ADG=90°,AD∥BC,
∴∠DAE=∠AEB=∠AEK,
∴AK=EK,設(shè)AK=EK=x,
在Rt△AFK中,∠AFK=90°,AF=AB=3,F(xiàn)K=-x,
∴x2=32+(-x)2,
∴x=,
∴FK=EF-EK=,
∵tan∠DAG=,
∴,
∴DG=,
情形②如圖當(dāng)點E在線段BC的延長線上時,設(shè)EF交AD于K.
∵BC=6,BE=3EC
∴EC=3,EB=EF=9
∵四邊形ABCD是矩形,
∴∠ADC=∠ADG=90°,AD∥BC,
∴∠DAE=∠AEB=∠AEK,
∴AK=EK,設(shè)AK=EK=x,
在Rt△AFK中,∠AFK=90°,AF=AB=3,F(xiàn)K=9-x,
∴x2=32+(9-x)2,
∴x=5,
∴FK=EF-EK=4,
∵tan∠DAG= ,
∴,
∴DG=8,
故答案為或8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,文具店老板購進100只兩種型號的文具進行銷售,其進價和售價之間的關(guān)系如下表:
型號 | 進價(元/只) | 售價(元/只) |
A型 | 10 | 14 |
B型 | 15 | 22 |
(1)老板如何進貨,能使進貨款恰好為1350元?
(2)要使銷售文具所獲利潤不少于500元,那么老板最多能購進A型文具多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線的圖像與x軸交于B,C兩點(B在C的左側(cè)),與y軸交于點A。
(1)求出點A,B,C的坐標。
(2)向右平移拋物線,使平移后的拋物線恰好經(jīng)過△ABC的外心,求出平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10<x≤50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形△ABC中,AB=3,BC=4,AC=5
(1)在圖①中畫一直線將△ABC分割成兩個等腰三角形;
(2)現(xiàn)有一點P與Q在△ABC的邊上運動,請在備用圖上畫出△APQ有一邊為2的等腰三角形的四種情況.
要求:1、用有刻度的直尺簡單作圖,并在所畫等腰三角形中邊長為2的邊上標注數(shù)字2即可,2即為線段BC長度的一半;2、形狀一樣的算一種圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護和改善環(huán)境,發(fā)展新經(jīng)濟,國家出臺了不限行、不限購等諸多新能源汽車優(yōu)惠政策鼓勵新能源汽車的發(fā)展,為響應(yīng)號召,某市某汽車專賣店銷售A,B兩種型號的新能源汽車共25輛,這兩種型號的新能源汽車的進價、售價如下表:
進價萬元輛 | 售價萬元輛 | |
A型 | 10 | |
B型 | 15 |
如何進貨,進貨款恰好為325萬元?
如何進貨,該專賣店售完A,B兩種型號的新能源汽車后獲利最多且不超過進貨價的,此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,BC是的直徑,點A在上,點D在CA的延長線上,,垂足為點E,DE與相交于點H,與AB相交于點過點A作,與DE相交于點F.
求證:AF為的切線;
當(dāng),且時,求:的值;
如圖2,在的條件下,延長FA,BC相交于點G,若,求線段EH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A開始以1cm/s的速度沿AB邊向點B運動,點Q從點B以2cm/s的速度沿BC邊向點C運動,如果P、Q同時出發(fā),設(shè)運動時間為ts,
(1)當(dāng)t=2時,求△PBQ的面積;
(2)當(dāng)t=時,試說明△DPQ是直角三角形;
(3)當(dāng)運動3s時,P點停止運動,Q點以原速立即向B點返回,在返回的過程中,DP是否能平分∠ADQ?若能,求出點Q運動的時間;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com