【題目】在平行四邊形ABCD中,BC邊上的高為4,AB=5,AC=2 ,則平行四邊形ABCD的周長等于

【答案】12或20
【解析】解:如圖1所示: ∵在ABCD中,BC邊上的高為4,AB=5,AC=2 ,
∴EC= =2,AB=CD=5,
BE= =3,
∴AD=BC=5,
ABCD的周長等于:20,
如圖2所示:
∵在ABCD中,BC邊上的高為4,AB=5,AC=2 ,
∴EC= =2,AB=CD=5,
BE=3,
∴BC=3﹣2=1,
ABCD的周長等于:1+1+5+5=12,
ABCD的周長等于12或20.
故答案為:12或20.

根據(jù)題意分別畫出圖形,BC邊上的高在平行四邊形的內部和外部,進而利用勾股定理求出即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)前夕,在東昌湖舉行第七屆全民健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所劃行的路程y(m)與時間x(min)之間的函數(shù)關系如圖所示,下列說法錯誤的是(
A.乙隊比甲隊提前0.25min到達終點
B.當乙隊劃行110m時,此時落后甲隊15m
C.0.5min后,乙隊比甲隊每分鐘快40m
D.自1.5min開始,甲隊若要與乙隊同時到達終點,甲隊的速度需要提高到255m/min

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,△EFG均是邊長為2的等邊三角形,點D是邊BC、EF的中點,直線AG、FC相交于點M.當△EFG繞點D旋轉時,點M運動的路徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,∠DAB=60°,連接對角線AC,以AC為邊作第二個ACC1D1 , 使∠D1AC=60°;連接AC1 , 再以AC1為邊作第三個菱形AC1C2D2 , 使∠D2AC1=60°;…,按此規(guī)律所作的第2017個菱形的邊長為(
A.( 2016
B.( 2016
C.22017
D.( 2017

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x﹣ 與x,y軸分別交于點A,B,與反比例函數(shù)y= (k>0)圖象交于點C,D,過點A作x軸的垂線交該反比例函數(shù)圖象于點E.
(1)求點A的坐標.
(2)若AE=AC. ①求k的值.
②試判斷點E與點D是否關于原點O成中心對稱?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD、線段CD分別表示該產品每千克生產成本y1(單位:元)、銷售價y2(單位:元)與產量x(單位:kg)之間的函數(shù)關系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)表達式;
(3)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y= x+1與x軸交于點A,且與雙曲線y= 的一個交點為B( ,m).
(1)求點A的坐標和雙曲線y= 的表達式;
(2)若BC∥y軸,且點C到直線y= x+1的距離為2,求點C的縱坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點C逆時針旋轉60°,得到△MNC,連接BM,那么BM的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B的坐標為(60,0),OA=AB,∠OAB=90°,OC=50.點P是線段OB上的一個動點(點P不與點O、B重合),過點P與y軸平行的直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R,設點P橫坐標為t,線段QR的長度為m.已知t=40時,直線l恰好經過點C.

(1)求點A和點C的坐標;
(2)當0<t<30時,求m關于t的函數(shù)關系式;
(3)當m=35時,請直接寫出t的值;
(4)直線l上有一點M,當∠PMB+∠POC=90°,且△PMB的周長為60時,請直接寫出滿足條件的點M的坐標.

查看答案和解析>>

同步練習冊答案