【題目】(知識背景)

我們在第十一章《三角形》中學習了三角形的邊與角的性質,在第十二章《全等三角形》中學習了全等三角形的性質和判定,在十三章《軸對稱》中學習了等腰三角形的性質和判定.在一些探究題中經常用以上知識轉化角和邊,進而解決問題.

1.(問題初探)

如圖(1),ABC中,∠BAC90°,ABAC,點DBC上一點,連接AD,以AD為一邊作ADE,使∠DAE90°,ADAE,連接BE,猜想BECD有怎樣的數(shù)量關系,并說明理由.

2.(類比再探)

如圖(2),ABC中,∠BAC90°,ABAC,點MAB上一點,點DBC上一點,連接MD,以MD為一邊作MDE,使∠DME90°,MDME,連接BE,則∠EBD________.(直接寫出答案,不寫過程,但要求作出輔助線)

3.(方法遷移)

如圖(3),ABC是等邊三角形,點DBC上一點,連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BE、BC之間有怎樣的數(shù)量關系?________(直接寫出答案,不寫過程).

4.(拓展創(chuàng)新)

如圖(4),ABC是等邊三角形,點MAB上一點,點DBC上一點,連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數(shù),并說明理由.

【答案】【問題初探】BE=CD,理由見解析;【類比再探】,如圖所示,理由見解析;【方法遷移】BE=CD,理由見解析;【拓展創(chuàng)新】,理由見解析

【解析】

1.【問題初探】根據已知條件易證得,從而得到結論;

2.【類比再探】根據四點共圓的判定和性質,即可得到結論;

3.【方法遷移】根據已知條件易證得,從而得到結論;

4.【拓展創(chuàng)新】根據四點共圓的判定和性質,即可得到結論.

1.【問題初探】BE=CD,理由是:

∵∠EAD=∠BAC=90,即:∠1+∠BAD=∠2+∠BAD=90,

∴∠1=∠2

又∵ADAEABAC,

,

BE=CD

2.【類比再探】,如圖所示:

都是等腰直角三角形,

∴∠MED=∠MBD=45,

BD、M、E四點共圓,

根據圓內接四邊形對角互補,

EBD180-EMD,

故答案是:;

3.【方法遷移】BE=CD,理由是:

∵∠EAD=∠BAC=60,即:∠1+∠BAD=∠2+∠BAD=60,

∴∠1=∠2

又∵ADAEABAC,

BE=CD;

4.【拓展創(chuàng)新】,理由是:

都是等邊三角形,

∴∠MED=∠MBD=60,

B、DM、E四點共圓,如圖所示:

根據圓內接四邊形對角互補,

EBD180-EMD,

故答案是:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是下滑數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為更好地開展傳統(tǒng)文化進校園活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.

最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表

根據以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;

(2)補全頻數(shù)分布直方圖;

(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直角ABC中,∠C=90°,∠A=30°,AB=4,以AC為腰,在ABC外作頂角為30°的等腰三角形ACD,連接BD.請畫出圖形,并直接寫出BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點共線

(1)當點D,點M在BC邊下方,CDBD時,如圖,求證:BM+CD=AM;(提示:延長DB到點N,使MN=MD,連接AN.)

(2)當點D在AC邊右側,點M在ABC內部時,如圖;當點D在AB邊左側,點M在ABC外部時,如圖,請直接寫出線段BM,CD,AM之間的數(shù)量關系,不需要證明;

(3)在(1),(2)條件下,點E是AB中點,MF是AMD的角平分線,連接EF,若EF=2MF=6,則CD=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請你用其中兩個作為條件,另一個作為結論,構造一個真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的正方形網格中,每一個小正方形的邊長為1,格點三角形ABC(頂點是網格線交點的三角形)的頂點AC的坐標分別是(-55),(-2,3)

1)請在圖中的網格平面內畫出平面直角坐標系xOy

2)請畫出ABC關于y軸對稱的A1B1C1,并寫出頂點A1,B1C1的坐標

3)請在x軸上求作一點P,使PB1C的周長最小.請標出點P的位置(保留作圖痕跡,不需說明作圖方法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GMx軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點T,使TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;

(3)點P為拋物線y1上一動點,過點Py軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖△ABC和△CDE均為等邊三角形,BC、D三點在同一條直線上,連接線段BE、AD交于點F,連接CF,

1)求證:∠FBC=FAC.

2)求∠BFC的度數(shù).

查看答案和解析>>

同步練習冊答案