【題目】為了預防“流感”,某學校對教室采用藥熏法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點燃后的時間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點燃后4分鐘燃盡,此時室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時,y與x之間函數(shù)的表達式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達式;
(3)研究表明,當空氣中每立方米的含藥量不低于2毫克時,才能有效殺滅空氣中的病菌,那么此次消毒有效時間有多長?
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使△PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運動時間t;若不存在,請說明理由;
(4)如圖②,點N的坐標為(﹣,0),線段PQ的中點為H,連接NH,當點Q關于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:如:解方程x(x+4)=6.
解:原方程可變形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接開平方并整理,得,.我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程(x+2)(x+6)=5時寫的解題過程.
解:原方程可變形,得
[(x+□)﹣〇][(x+□)+〇]=5.
(x+□)2﹣〇2=5,
(x+□)2=5+〇2.
直接開平方并整理,得x1=☆,x2=¤.
上述過程中的“□”,“〇”,“☆”,“¤”表示的數(shù)分別為 , , , .
(2)請用“平均數(shù)法”解方程:(x﹣3)(x+1)=5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取n名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、E分別在AC、BC上,如果測得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,求A、B兩地間的距離。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC∥DF,AD=BE,要使△ABC≌△DEF,所添加條件不正確的是( )
A.AC=DFB.BC∥EFC.BC=EFD.∠C=∠F
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了三角形全等的判定方法(即SSS,SAS,ASA,AAS)和直角三角形全等的判定方法(即HL)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究.
(初步思考)
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后對∠B進行分類,可以分為“∠B是直角、鈍角、銳角”三種情況進行探究.
(深入探究)
第一種情況:當∠B為銳角時,△ABC和△DEF不一定全等.
(1)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你用尺規(guī)在圖中確定點D,使△DEF和△ABC不全等(不寫作法,保留作圖痕跡);
第二種情況:當∠B為直角時,△ABC≌△DEF.
(2)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)____,可以知道Rt△ABC≌Rt△DEF.
第三種情況:當∠B為鈍角時,△ABC≌△DEF.
(3)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角,求證:△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸相交于點,與軸相交于點.
(1)求點,的坐標;
(2)求當時,的值,當時,的值;
(3)過點作直線與軸相交于點,且使,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】美是一種感覺,本應沒有什么客觀的標準,但在自然界里,物體形狀的比例卻提供了在的稱與協(xié)調(diào)上的一種美感的參考,在數(shù)學上,這個比例稱為黃金分割.在人體由腳底至肚臍的長度與身高的比例上,肚臍是理想的黃金分割點,也就是說,若此比值越接近就越給別人一種美的感覺. 某女士身高為,腳底至肚臍的長度與身高的比為為了追求美,地想利用高跟鞋達到這一效果 ,那么她選的高跟鞋的高度約為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com