【題目】如圖,在平面直角坐標(biāo)系中,ABC三個頂點的坐標(biāo)分別是A22),B40),C4,﹣4

1)將ABC繞點A順時針旋轉(zhuǎn)90°后得到AB1C1,在圖①中畫出AB1C1,并求出在旋轉(zhuǎn)過程中ABC掃過的面積;

2)在圖②中以點O為位似中心,將ABC縮小為原來的,并寫出點C的對應(yīng)點的坐標(biāo).

【答案】(1)作圖見解析,10π+4;(2)見解析,(2,﹣2)或(﹣22).

【解析】

1)利用旋轉(zhuǎn)的性質(zhì)作圖,根據(jù)扇形面積求法以及三角形面積求法得出面積;
2)根據(jù)位似圖形的作法作圖,再根據(jù)對應(yīng)點的位置寫出坐標(biāo).

解:(1)如圖所示:AB1C1即為所求,

ABC掃過的面積為:

2)如圖所示:ABC以及ABC即為所求,

C點對應(yīng)點為:(2,﹣2)或(﹣2,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.

1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向1的概率為   ;

2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接AC,點E為正方形ABCD內(nèi)一點,∠BAE=BCE=15°,點FAE延長線上一點,且BF=BC,連接CF,下列結(jié)論:①EF平分∠BEC;②△BCF是等邊三角形;③∠AFC=45°;④EF=AE+BE.正確的是(

A.①②B.②③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點

)分別求這兩個函數(shù)的表達式.

)將直線向上平移個單位長度后與軸交于點,與反比例函數(shù)圖象在第四象限內(nèi)的交點為,連接、,求點的坐標(biāo)及的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個交點,則m=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD=4,M點是BC的中點,A為圓心,AB為半徑的圓交AD于點E.點P在弧BE上運動,則PM+DP的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點Pm,1)(m0),與y軸的交點C0m2+1).

1)求拋物線的解析式(用含m的式子表示)

2)點Nx,y)在該拋物線上,NH⊥直線y于點H,點Mm)且∠NMH60°

①求證:△MNH是等邊三角形;

②當(dāng)點OP、N在同一直線上時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點AD分別在x軸、y軸上,∠ADO30°OA2,反比例函y經(jīng)過CD的中點M,那么k_____

查看答案和解析>>

同步練習(xí)冊答案