【題目】已知,如圖所示,折疊矩形的一邊,使點落在邊的點處,如果.
(1)求FC的長;(2)求EC的長.
【答案】(1)FC=4;(2)EC=3.
【解析】(1)根據(jù)折疊的性質(zhì)得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理計算出BF=6,則FC=4;
(2)設EC=x,則DE=EF=8-x,在Rt△EFC中,根據(jù)勾股定理得x2+42=(8-x)2,然后解方程即可.
(1)∵四邊形ABCD為矩形,
∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,
∵折疊矩形的一邊AD,使點D落在BC邊的點F處
∴AF=AD=10,DE=EF,
在Rt△ABF中,BF==6,
∴FC=BC-BF=4;
(2)設EC=x,則DE=8-x,EF=8-x,
在Rt△EFC中,
∵EC2+FC2=EF2,
∴x2+42=(8-x)2,
解得x=3
∴EC的長為3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為線段AB上一點,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若AC+BC=acm,其他條件不變,直接寫出線段MN的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點A,與y軸交于點B,與直線y=x交于點E,點E的橫坐標為3
(1) 求點A的坐標
(2) 在x軸上有一點P(m,0),過點P作x軸的垂線,與直線交于點C,與直線y=x 交于點D.若CD≥4,則m的取值范圍為___________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(-8,0),點A的坐標為(-6,0).
(1)求k的值;
(2)若點P(x,y)是該直線上的一個動點,探究:當△OPA的面積為27時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a,b,c分別滿足:-(a-4)2≥0,c=++8.
(1)直線y=bx+c的解析式為________;正方形OABC的對角線的交點D的坐標為________;
(2)若正方形OABC沿x軸負方向以每秒移動1個單位長度的速度平移,設平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;
(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PM⊥PO,交直線AB于M,在備用圖中畫圖分析,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:如圖,點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于受到手機更新?lián)Q代的影響,某店經(jīng)銷的甲型號手機今年的售價比去年每臺降價500元.如果賣出相同數(shù)量的手機,那么去年銷售額為8萬元,今年銷售額只有6萬元.
(1)今年甲型號手機每臺售價為多少元?
(2)為了提高利潤,該店計劃購進乙型號手機銷售,已知甲型號手機每臺進價為1000元,乙型號手機每臺進價為800元,預計用不多于1.84萬元且不少于1.76萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,線段AB⊥BC于點B,CD⊥BC于點C,點E在線段BC上,且AE⊥DE.
(1)求證:∠EAB=∠CED;
(2)如圖2,AF、DF分別平分∠BAE和∠CDE,EH平分∠DEC交CD于點H,EH的反向延長線交AF于點G.
①求證EG⊥AF;
②求∠F的度數(shù).(提示:三角形內(nèi)角和等于180度)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com