【題目】如圖,在Rt△BCD中,∠CBD=90°,BC=BD,點A在CB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EF⊥EA,交CD所在直線于點F.
(1)當點E在線段BD上移動時,如圖(1)所示,求證:AE=EF;
(2)當點E在直線BD上移動時,如圖(2)、圖(3)所示,線段AE與EF又有怎樣的數量關系?請直接寫出你的猜想,不需證明.
【答案】(1)證明見解析;(2)AE=EF,證明見解析.
【解析】
(1)如圖1中,在BA上截取BH,使得BH=BE.證明△AHE≌△EDF,根據全等三角形的性質可得AE=EF;(2)如圖2中,在BC上截取BH=BE,類比(1)的方法可證AE=EF;如圖3中,在BA上截取BH,使得BH=BE.類比(1)的方法可證AE=EF.
(1)證明:如圖1中,在BA上截取BH,使得BH=BE.
∵BC=AB=BD,BE=BH,
∴AH=ED,
∵∠AEF=∠ABE=90°,
∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,
∴∠FED=∠HAE,
∵∠BHE=∠CDB=45°,
∴∠AHE=∠EDF=135°,
∴△AHE≌△EDF,
∴AE=EF.
(2)如圖2中,在BC上截取BH=BE,同法可證:AE=EF
如圖3中,在BA上截取BH,使得BH=BE.同法可證:AE=EF.
科目:初中數學 來源: 題型:
【題目】二次函數的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結論:①;②;③;④當時, 隨的增大而增大.其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC各頂點的橫、縱坐標都是整數,
(1)寫出△ABC各頂點的坐標;
(2)作出△ABC關于x軸對稱的圖形△A1B1C1;
(3)寫出△A1B1C1的各頂點關于y軸對稱點A2,B2,C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=_____度;
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=_______度;
(3)思考:通過以上兩題,你發(fā)現∠BAD與∠EDC之間有什么關系?請用式子表示:____________________.
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關系?如有,請你寫出來,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中點,點E在AC上,點F在BC上,DE=DF,若BF=4,則EF=_______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設運動的時間為t秒.
(1)當t為何值時,CP把△ABC的周長分成相等的兩部分;
(2)當t為何值時,CP把△ABC的面積分成相等的兩部分;
(3)在(2)的情況下,若過點P作PE//BC,且在BC上有一點F,PE=CF,連結PF,
BE,試探索PF與BE的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點D,AD=3.5cm,點P、Q分別為AB、AD上的兩個定點且BP=AQ=2cm,若在BD上有一動點E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角三角形的直角頂點在坐標原點,∠OAB=30°,若點A在反比例函數y=(x>0)的圖象上,則經過點B的反比例函數解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com