【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于M,N兩點;再分別以點M,N為圓心,大于MN長為半徑作圓弧,兩條圓弧交于點P,作射線AP交邊BC于點D.若△ABC的面積為10,則△ACD的面積為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上,蔣老師拿出了4張分別與有數(shù)字1,2,3,4的卡片(除數(shù)字外其他都相同),讓同學(xué)們隨機(jī)抽取兩張,并計算這兩張卡片上數(shù)字的和.
(1)請用列表或畫樹狀圖的方法列舉出所有等可能的結(jié)果;
(2)求兩張卡片上數(shù)字的和大于5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“第二十屆中國哈爾濱冰雪大世界”主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計圖:
(1)本次調(diào)查共抽取了多少名學(xué)生;
(2)通過計算補全條形圖;
(3)若該學(xué)校共有名學(xué)生,請你估計該學(xué)校選擇“比較了解”項目的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,甲、乙兩車同時從A地出發(fā),分別勻速前往B地與C地,甲車到達(dá)B地休息一段時間后原速返回,乙車到達(dá)C地后立即返回.兩車恰好同時返回A地.圖②是兩車各自行駛的路程y(千米)與出發(fā)時間x(時)之間的函數(shù)圖象.根據(jù)圖象解答下列問題:
(1)甲車到達(dá)B地休息了 時;
(2)求甲車返回A地途中y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時,兩車與A地的路程恰好相同.(不考慮兩車同在A地的情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC 的邊長為 2,頂點 B、C 在半徑為 的圓上,頂點 A在圓內(nèi),將正△ABC 繞點 B 逆時針旋轉(zhuǎn),當(dāng)點 A 第一次落在圓上時,則點 C 運動的路線長為 (結(jié)果保留π);若 A 點落在圓上記做第 1 次旋轉(zhuǎn),將△ABC 繞點 A 逆時針旋轉(zhuǎn),當(dāng)點 C 第一次落在圓上記做第 2 次旋轉(zhuǎn),再繞 C 將△ABC 逆時針旋轉(zhuǎn),當(dāng)點 B 第一次落在圓上,記做第 3 次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)△ABC 完成第 2017 次旋轉(zhuǎn)時,BC 邊共回到原來位置 次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點P為內(nèi)一點,連接PA,PB,PC,求PA+PB+PC的最小值,小華的解題思路,以點A為旋轉(zhuǎn)中心,將順時針旋轉(zhuǎn)得到,那么就將求PA+PB+PC的值轉(zhuǎn)化為求PM+MN+PC的值,連接CN,當(dāng)點P,M落在CN上時,此題可解.
(1)請判斷的形狀,并說明理由;
(2)請你參考小華的解題思路,證明PA+PB+PC=PM+MN+PC;
(3)當(dāng),求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結(jié)論:
①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.
其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com