【題目】在同圓或等圓中,如果弧AB的長度=CD的長度,則下列說法正確的個數(shù)是(

AB的度數(shù)等于弧CD的度數(shù);所對的圓心角等于弧CD所對的圓心角;

AB和弧CD是等; AB所對的弦的弦心距等于弧CD所對的弦的弦心距

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

由在同圓或等圓中,的長度=的長度,根據(jù)弧長公式得到它們所對的圓心角相等,再根據(jù)在同圓或等圓中,如果兩個圓心角以及它們對應(yīng)的兩條弧、兩條弦中有一組量相等,則另外兩組量也對應(yīng)相等,即可對選項進行判斷.

∵在同圓或等圓中,的長度=的長度,

∴弧AB和弧CD所對的圓心角相等,

的度數(shù)等于的度數(shù);

是等。

所對的弦的弦心距等于所對的弦的弦心距.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面內(nèi),給定∠AOB=60°,及OB邊上一點C,如圖所示.到射線OA,OB距離相等的所有點組成圖形G,線段OC的垂直平分線交圖形G于點D,連接CD

1)依題意補全圖形;直接寫出∠DCO的度數(shù);

2)過點DOD的垂線,交OA于點EOB于點F.求證:CF=DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃在總費用2300元的限額內(nèi),租用客車送234名學生和6名教師集體外出活動每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

乙種客車

載客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少輛客車?

(2)請給出最節(jié)省費用的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,、、為拋物線與坐標軸的交點,且,則下列關(guān)系中正確的是(

A. ac<0 B. b<2a C. a+b=-1 D. a-b=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進價分別是多少元?

2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,圓柱底面半徑為,高為,點分別是圓柱兩底面圓周上的點,且、在同一母線上,用一棉線從順著圓柱側(cè)面繞3圈到,求棉線最短為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市計劃建造一座如圖設(shè)計的塔形建筑物作為市標,最底層的圓柱形的底面半徑為,高為米,再上去的圓柱形底面半徑以的比例縮小,而樓層的高度也以同樣的比例縮小,那么要使得建筑物的表面積不超過平方米(表面積不包括最底層的底面積),樓層最高為________層.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對垃圾進行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護環(huán)境.為了解同學們對垃圾分類知識的了解程度,增強同學們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學興趣小組的同學們設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學進行了問卷測試,根據(jù)測試成績分布情況,他們將全部測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計圖表:

“垃圾分類知識及投放情況”問卷測試成績統(tǒng)計圖表

 組別

分數(shù)/分

頻數(shù)

各組總分/分

A

60<x≤70

38

2 581

B

70<x≤80

72

5 543

C

80<x≤90

60

5 100

D

90<x≤100

m

2 796

依據(jù)以上統(tǒng)計信息,解答下列問題:

(1)求得m=________,n=__________;

(2)這次測試成績的中位數(shù)落在______組;

(3)求本次全部測試成績的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習與探究:

在等邊△ABC中,P是射線AB上的一點.

1)探索實踐:

如圖1,P是邊AB的中點,D是線段CP上的一個動點,以CD為邊向右側(cè)作等邊△CDE,DEBC交于點M,連結(jié)BE

①求證:ADBE

②連結(jié)BD,當DB+DM最小時,試在圖2中確定D的位置,并說明理由;(要求用尺規(guī)作圖,保留作圖痕跡)

③在②的條件下,求△CME與△ACM的面積之比.

2)思維拓展:

如圖3,點P在邊AB的延長線上,連接CP,點B關(guān)于直線CP的對稱點為B',連結(jié)AB'CB',AB'BC于點N,交直線CP于點G,連結(jié)BG.請判斷∠AGC與∠AGB的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案