【題目】在同圓或等圓中,如果弧AB的長度=弧CD的長度,則下列說法正確的個數(shù)是( )
弧AB的度數(shù)等于弧CD的度數(shù);所對的圓心角等于弧CD所對的圓心角;
弧AB和弧CD是等; 弧AB所對的弦的弦心距等于弧CD所對的弦的弦心距.
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】在平面內(nèi),給定∠AOB=60°,及OB邊上一點C,如圖所示.到射線OA,OB距離相等的所有點組成圖形G,線段OC的垂直平分線交圖形G于點D,連接CD.
(1)依題意補全圖形;直接寫出∠DCO的度數(shù);
(2)過點D作OD的垂線,交OA于點E,OB于點F.求證:CF=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃在總費用2300元的限額內(nèi),租用客車送234名學生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 45 | 30 |
租金/(元/輛) | 400 | 280 |
(1)共需租多少輛客車?
(2)請給出最節(jié)省費用的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)的圖象,、、為拋物線與坐標軸的交點,且,則下列關(guān)系中正確的是( )
A. ac<0 B. b<2a C. a+b=-1 D. a-b=-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,圓柱底面半徑為,高為,點分別是圓柱兩底面圓周上的點,且、在同一母線上,用一棉線從順著圓柱側(cè)面繞3圈到,求棉線最短為_________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市計劃建造一座如圖設(shè)計的塔形建筑物作為市標,最底層的圓柱形的底面半徑為,高為米,再上去的圓柱形底面半徑以的比例縮小,而樓層的高度也以同樣的比例縮小,那么要使得建筑物的表面積不超過平方米(表面積不包括最底層的底面積),樓層最高為________層.取
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對垃圾進行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護環(huán)境.為了解同學們對垃圾分類知識的了解程度,增強同學們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學興趣小組的同學們設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學進行了問卷測試,根據(jù)測試成績分布情況,他們將全部測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計圖表:
“垃圾分類知識及投放情況”問卷測試成績統(tǒng)計圖表
組別 | 分數(shù)/分 | 頻數(shù) | 各組總分/分 |
A | 60<x≤70 | 38 | 2 581 |
B | 70<x≤80 | 72 | 5 543 |
C | 80<x≤90 | 60 | 5 100 |
D | 90<x≤100 | m | 2 796 |
依據(jù)以上統(tǒng)計信息,解答下列問題:
(1)求得m=________,n=__________;
(2)這次測試成績的中位數(shù)落在______組;
(3)求本次全部測試成績的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習與探究:
在等邊△ABC中,P是射線AB上的一點.
(1)探索實踐:
如圖1,P是邊AB的中點,D是線段CP上的一個動點,以CD為邊向右側(cè)作等邊△CDE,DE與BC交于點M,連結(jié)BE.
①求證:AD=BE;
②連結(jié)BD,當DB+DM最小時,試在圖2中確定D的位置,并說明理由;(要求用尺規(guī)作圖,保留作圖痕跡)
③在②的條件下,求△CME與△ACM的面積之比.
(2)思維拓展:
如圖3,點P在邊AB的延長線上,連接CP,點B關(guān)于直線CP的對稱點為B',連結(jié)AB',CB',AB'交BC于點N,交直線CP于點G,連結(jié)BG.請判斷∠AGC與∠AGB的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com