【題目】如圖為二次函數(shù)的圖象,、、為拋物線與坐標(biāo)軸的交點(diǎn),且,則下列關(guān)系中正確的是( )
A. ac<0 B. b<2a C. a+b=-1 D. a-b=-1
【答案】D
【解析】
根據(jù)OC=1,可得c=1,然后根據(jù)x=1時(shí),y>0,可得a+b+1>0,所以a+b>-1;根據(jù)拋物線開口向上,可得a>0;然后根據(jù)c=1,可得ac>0;根據(jù)OA=1,可得x=-<-1,然后根據(jù)a>0,可得b>2a;根據(jù)OA=1,可得x=-1時(shí),y=0,所以a-b+c=0,然后根據(jù)c=1,可得a-b=-1,據(jù)此判斷即可.
∵OC=1,
∴c=1,
又∵x=1時(shí),y>0,
∴a+b+1>0,
∴a+b>-1,
∴選項(xiàng)C不正確;
∵拋物線開口向上,
∴a>0;
又∵c=1,
∴ac=a>0,
∴選項(xiàng)A不正確;
∵OA=1,
∴x=-<-1,
又∵a>0,
∴b>2a,
∴選項(xiàng)B不正確;
∵OA=1,
∴x=-1時(shí),y=0,
∴a-b+c=0,
又∵c=1,
∴a-b=-1,
∴選項(xiàng)D正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,∠ACB=30°,BC=,點(diǎn)D在邊BC上,連接AD,在AD上方作等邊三角形ADE,連接EC.
(1)求證:DE=CE;
(2)若點(diǎn)D在BC延長線上,其他條件不變,直接寫出DE,CE之間的數(shù)量關(guān)系(不必證明);
(3)當(dāng)點(diǎn)D從點(diǎn)B出發(fā)沿著線段BC運(yùn)動到點(diǎn)C時(shí),求點(diǎn)E的運(yùn)動路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形ABCD和Rt△ABE重疊在一起,其中AB=2,∠BAE=60°,若把Rt△ABE繞直角頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),使斜邊AE恰好經(jīng)過正方形的頂點(diǎn)C,得到Rt△A′BE′,AE與A′B、A′E分別相交于點(diǎn)F,G,那么△ABE與△A′BE′的重疊部分(即四邊形BCGF部分)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,直角尺的直角頂點(diǎn)在上滑動時(shí)(點(diǎn)與,不重合),
一直角邊經(jīng)過點(diǎn),另一直角邊交于點(diǎn),我們知道,結(jié)論“”成立.
當(dāng)時(shí),求的長;
是否存在這樣的點(diǎn),使的周長等于周長的倍?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小兵在玩一個(gè)游戲:任意向空中拋擲枚均勻的骰子,落地后如果它們點(diǎn)數(shù)相同,則小聰?shù)?/span>分;如果它們點(diǎn)數(shù)不相同,則小兵得分.得分多者獲勝.那么小兵獲勝的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同圓或等圓中,如果弧AB的長度=弧CD的長度,則下列說法正確的個(gè)數(shù)是( )
弧AB的度數(shù)等于弧CD的度數(shù);所對的圓心角等于弧CD所對的圓心角;
弧AB和弧CD是等弧; 弧AB所對的弦的弦心距等于弧CD所對的弦的弦心距.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,以為直徑的圓與軸的負(fù)半軸交于點(diǎn).
(1)求圖象經(jīng)過,,三點(diǎn)的拋物線的解析式;
(2)設(shè)點(diǎn)為所求拋物線的頂點(diǎn),試判斷直線與的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A、B、C、D、E五個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會是均等的.規(guī)定:
①玩家只能將小兔從A、B兩個(gè)出入口放入;
②如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價(jià)值5元小兔玩具,否則應(yīng)付費(fèi)3元.
(1)問小美得到小兔玩具的機(jī)會有多大?
(2)假設(shè)有100人次玩此游戲,估計(jì)游戲設(shè)計(jì)者可賺多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com