【題目】“九宮圖”傳說是遠古時代洛河中的一個神龜背上的圖案,故又稱“龜背圖”,中國古代數(shù)學史上經(jīng)常研究這一神話。

⑴現(xiàn)有1,2,3,4,5,6,7,8,9共九個數(shù)字,請將它們分別填入圖1的九個方格中,使得每行的三個數(shù)、每列的三個數(shù)、斜對角的三個數(shù)之和都等于15.

⑵通過研究問題⑴,利用你發(fā)現(xiàn)的規(guī)律,將3,5,-7,1,7,-3,9,-5,-1

這九個數(shù)字分別填入圖2的九個方格中,使得橫、豎、斜對角的所有三個數(shù)的和都相等.

【答案】詳見解析.

【解析】

115÷3=5,

最中間的數(shù)是5,其它空格填寫如圖1;

2)先求出所有數(shù)的和是9,根據(jù)題意,每個數(shù)都用了3次,用9÷3=3得到橫、豎、斜對角的所有三個數(shù)的和等于3,然后根據(jù)3試探填入數(shù)據(jù)即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】去年4月,國民體質(zhì)監(jiān)測中心等機構開展了青少年形體測評,專家組隨機抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況. 我們對專家的測評數(shù)據(jù)作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結果繪制成了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答些列問題:

1)請將兩幅圖補充完整;

2)在這次形體測評中,一共抽查了______名學生,如果全市有20萬名初中生,那么全市初中生中,三姿良好的學生約有______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(人/輛)

45

30

租金(元/輛)

400

280

某中學根據(jù)實際情況,計劃租用AB型客車共5輛,同時送七年級師生到基地校參加社會實踐活動.設租用A型客車x輛,根據(jù)要求回答下列問題:

1)用含x的式子填寫下表:

車輛數(shù)(輛)

載客量

租金(元)

A

x

45x

400x

B

5-x

2)若要保證租車費用不超過1900元,求x的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把棱長為1cm的若干個小正方體擺放如圖所示的幾何體,然后在露出的表面上涂上顏色不含底面

該幾何體中有多少小正方體?

畫出主視圖.

求出涂上顏色部分的總面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB、DC(或它們的延長線)于點M、N.當∠MAN繞點A旋轉到BM=DN時(如圖),易證BM+DN=MN

1)當∠MAN繞點A旋轉到BMDN時(如圖),線段BM、DNMN之間有怎樣的數(shù)量關系?寫出猜想,并加以證明;

2)當∠MAN繞點A旋轉到如圖的位置時,線段BMDNMN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1x2,y1y2.若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點PQ的“相關矩形”,下圖為點P,Q的“相關矩形”的示意圖.

已知點A的坐標為(1,0),

1)若點B的坐標為(3,1),求點AB的“相關矩形”的面積;

2)點C在直線x3上,若點AC的“相關矩形”為正方形,求直線AC的表達式;

3)若點D的坐標為(4,2),將直線y2x+b平移,當它與點A,D的“相關矩形”沒有公共點時,求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結果保留小數(shù)后一位).(參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90)

查看答案和解析>>

同步練習冊答案