【題目】在梯形ABCD中,AD∥BC,下列條件中,不能判斷梯形ABCD是等腰梯形的是( 。

A. ∠ABC=∠DCB B. ∠DBC=∠ACB C. ∠DAC=∠DBC D. ∠ACD=∠DAC

【答案】D

【解析】A、∵∠ABC=DCB

BD=BC,

∴四邊形ABCD是等腰梯形,故本選項(xiàng)錯(cuò)誤;

B、∵∠DAC=DBC,ADBC

∴∠ADB=DBC,DAC=ACB

∴∠OBC=OCB,OAD=ODA

OB=OCOD=OA,

AC=BD,

∴四邊形ABCD是等腰梯形,故本選項(xiàng)錯(cuò)誤;

C、∵∠ADB=DAC,ADBC,

∴∠ADB=DAC=DBC=ACB,

OA=OD,OB=OC,

AC=BD,

ADBC

∴四邊形ABCD是等腰梯形,故本選項(xiàng)錯(cuò)誤;

D、根據(jù)∠ACD=DAC,不能推出四邊形ABCD是等腰梯形,故本選項(xiàng)正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊ABC的邊長為4cm,動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿射線BC方向移動(dòng),以AD為邊作等邊ADE

1)在點(diǎn)D運(yùn)動(dòng)的過程中,點(diǎn)E能否移動(dòng)至直線AB上?若能,求出此時(shí)BD的長;若不能,請說明理由;

2)如圖2,在點(diǎn)D從點(diǎn)B開始移動(dòng)至點(diǎn)C的過程中,以等邊ADE的邊AD、DE為邊作ADEF

ADEF的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由;

若點(diǎn)M、N、P分別為AE、ADDE上動(dòng)點(diǎn),直接寫出MN+MP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,E是AD上一點(diǎn),AE=AB,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.

(1)如圖1,當(dāng)EF與AB相交時(shí),若EAB=60°,求證:EG=AG+BG;

(2)如圖2,當(dāng)EF與AB相交時(shí),若∠EAB=α(0°<α<90°),請你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);

(3)如圖3,當(dāng)EF與CD相交時(shí),且EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線ODOE

1)如圖①,當(dāng)∠BOC70°時(shí),求∠DOE的度數(shù);

2)如圖②,當(dāng)射線OC在∠AOB內(nèi)繞O點(diǎn)旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化若變化,說明理由;若不變,求∠DOE的度數(shù);

3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫出圖形,判斷∠DOE的大小是否發(fā)生變化若變化,說明理由;若不變,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺(tái)的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).

(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從揚(yáng)州乘“K”字頭列車A、“T”字頭列車B都可直達(dá)南京,已知A車的平均速度為60km/hB車的平均速度為A車的1.5倍,且走完全程B車所需時(shí)間比A車少45分鐘.

1)求揚(yáng)州至南京的鐵路里程;

2)若兩車以各自的平均速度分別從揚(yáng)州、南京同時(shí)相向而行,問經(jīng)過多少時(shí)間兩車相距15km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,DO上,AB=AC,ADBC相交于點(diǎn)E,AE=ED,延長DB到點(diǎn)F,使FB=BD,連接AF.

(1)證明:△BDE∽△FDA;

(2)試判斷直線AF⊙O的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,,將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到,連接.

1)當(dāng)時(shí),判斷的形狀,并說明理由;

2)求的度數(shù);

3)請你探究:當(dāng)為多少度時(shí),是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案