【題目】如圖,菱形ABCD中,對(duì)角線AC等于,∠D=120°,則菱形ABCD的面積為( )
A.B.54C.36D.
【答案】D
【解析】
如圖,連接BD交AC于點(diǎn)O,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)可得AO的長(zhǎng)、BO=DO、AC⊥BD、∠DAC =30°,然后利用30°角的直角三角形的性質(zhì)和勾股定理可求出OD的長(zhǎng),即得BD的長(zhǎng),再根據(jù)菱形的面積=對(duì)角線乘積的一半計(jì)算即可.
解:如圖,連接BD交AC于點(diǎn)O,∵四邊形ABCD是菱形,
∴AD=CD,AO=CO=,BO=DO,AC⊥BD,
∵∠ADC=120°,∴∠DAC=∠ACD=30°,∴AD=2DO,
設(shè)DO=x,則AD=2x,在直角△ADO中,根據(jù)勾股定理,得,解得:x=3,(負(fù)值已舍去)∴BD=6,
∴菱形ABCD的面積=.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為,點(diǎn)的坐標(biāo)為;
(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),畫出,則點(diǎn)的坐標(biāo)是 ,的周長(zhǎng)是 (結(jié)果保留根號(hào));
(3)作出關(guān)于軸對(duì)稱的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠B=a,DE交AC于點(diǎn)E,下列結(jié)論:①AD2=AE.AB;②1.8≤AE<5;⑤當(dāng)AD=時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國(guó)高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E、F分別在邊AB、DC上,下列條件不能使四邊形EBFD是平行四邊形的條件是( )
A.DE=BFB.AE=CFC.DE∥FBD.∠ADE=∠CBF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在BC、DC上,CE=DF=2,DE與AF相交于點(diǎn)G,點(diǎn)H為AE的中點(diǎn),連接GH.
(1)求證:△ADF≌△DCE;
(2)求GH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列多面體,并把下表補(bǔ)充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點(diǎn)數(shù) | 6 | 10 | 12 | |
棱數(shù) | 9 | 12 | ||
面數(shù) | 5 | 8 |
觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請(qǐng)寫出關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開如下研究:
問(wèn)題初探:
(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為______;
問(wèn)題再探:
(2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:
①DE始終等于DF;②BE與CF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.
成果運(yùn)用
(3)若邊長(zhǎng)AB=4,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,記四邊形DEAF的周長(zhǎng)為L,L=DE+EA+AF+FD,則周長(zhǎng)L的變化范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.
(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.
(2)求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.
(3)求機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com