【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)為,,,其中是二元一次方程組的解,且.
(1)求的面積;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長度/秒的速度沿向終點(diǎn)運(yùn)動(dòng),連接,點(diǎn)是線段的中點(diǎn),連接,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為(),求與之間的關(guān)系式,并直接寫出的取值范圍;
(3)在(2)的條件下,當(dāng)時(shí),求點(diǎn)的坐標(biāo);此時(shí)若在邊上存在一點(diǎn),連接,使,試判斷與的數(shù)量關(guān)系,并說明理由.
【答案】(1)12 (2) (3),,證明見解析
【解析】
(1)解二元一次方程組解出m,n的值,即可得出A、B、C的坐標(biāo),即可得出的面積;
(2)根據(jù)各點(diǎn)的坐標(biāo)得,即可確定的取值范圍,再根據(jù)三角形的面積公式列出關(guān)系式即可;
(3)用t表示△APC的面積,根據(jù)聯(lián)立方程解得,即可得到點(diǎn)P的坐標(biāo),根據(jù)三角形外角的性質(zhì)即可求出與的數(shù)量關(guān)系.
(1)
解得
∴,,
.
(2)∵,,
∴
∵動(dòng)點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長度/秒的速度沿向終點(diǎn)運(yùn)動(dòng)
∴
解得
當(dāng)時(shí),
故 .
(3)∵,
∴當(dāng)時(shí),
解得成立
∴
∴
如圖,作,連接PQ、AP
∵, ,
∴
∵
∴
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得出了下面五條信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你認(rèn)為其中正確的信息是( 。
A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有長度分別為3cm、4cm、5cm、8cm的4根木條
(1)李鑫同學(xué)從中任取一根,抽到“長度是4cm的木條”的概率是 .
(2)在李鑫同學(xué)取出4cm的木條后,王華同學(xué)又從剩下的木條中,同時(shí)隨機(jī)取出兩根,求他們?nèi)〕龅娜緱l能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1cm,弦AB、CD的長度分別為cm,1cm.
(1)求圓心O到弦AB的距離;
(2)弦AC、BD所夾的銳角α的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E分別是AC、AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三個(gè)條件中,哪兩個(gè)條件 可判定△ABC是等腰三角形(用序號(hào)寫出所有情形);
(2)選擇第(1)小題中的一種情形,證明△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點(diǎn).
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動(dòng)點(diǎn).若BF的延長線交正方形ABCD的一邊于點(diǎn)G,且滿足AE=BG,則的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com