【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點(diǎn).

1)求∠EDA的度數(shù);

2AB10AC8,DE3,求SABC

【答案】160°;(227.

【解析】

1)先求出∠BAC 60°,再用ADABC的角平分線求出∠BAD,再根據(jù)垂直,即可求解;

2)過(guò)DDFACF,三角形ABC的面積為三角形ABD和三角形ACD的和即可求解.

解:(1)∵∠B50°,∠C70°,

∴∠BAC180°﹣∠B﹣∠C180°50°70°60°

ADABC的角平分線,

∴∠BADBAC×60°30°

DEAB,

∴∠DEA90°,

∴∠EDA180°﹣∠BAD﹣∠DEA180°30°90°60°

2)如圖,過(guò)DDFACF,

ADABC的角平分線,DEAB,

DFDE3,

又∵AB10,AC8,

SABC×AB×DE×AC×DF×10×3×8×327

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,每塊砌墻用的磚塊厚度為,小聰很快就知道了兩個(gè)墻腳之間的距離的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問(wèn)題

1)畫出將ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

2)畫出將ABC關(guān)于原點(diǎn)O對(duì)稱的圖形A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為3,BDDC21,EAC的中點(diǎn),ADBE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,請(qǐng)回答下列問(wèn)題

材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》中記述了三斜求積術(shù),即已知三角形的三邊長(zhǎng),求它的面積.用現(xiàn)代式子表示即為:S①(其中a,b,c為三角形的三邊長(zhǎng),S為面積)而另一個(gè)文明古國(guó)古希臘也有求三角形面積的海倫公式;S……②(其中p

材料二:對(duì)于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三邊長(zhǎng)分別為3、45,請(qǐng)?jiān)嚪謩e運(yùn)用公式①和公式②,計(jì)算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋嚕?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是直線AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得ABDE的是( )

A. α+∠β=180° B. β﹣∠α=90° C. β=3∠α D. α+∠β=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+3的圖象與x軸正半軸交于B、C兩點(diǎn),BC=2,則b的值為( )

A.4 B.﹣4 C.±4 D.﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩幢大樓的部分截面及相關(guān)數(shù)據(jù)如圖,小明在甲樓A處透過(guò)窗戶E發(fā)現(xiàn)乙樓F處出現(xiàn)火災(zāi),此時(shí)A,E,F在同一直線上.跑到一樓時(shí),消防員正在進(jìn)行噴水滅火,水流路線呈拋物線,在1.2m高的D處噴出,水流正好經(jīng)過(guò)E,F. 若點(diǎn)B和點(diǎn)E、點(diǎn)CF的離地高度分別相同,現(xiàn)消防員將水流拋物線向上平移0.4m,再向左后退了____m,恰好把水噴到F處進(jìn)行滅火.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,有一點(diǎn)PAC上移動(dòng).若ABAC5BC6,AP+BP+CP的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案