【題目】已知:如圖,的頂點是反比例函數(shù)圖象上一點,過點作交反比例函數(shù)的圖象于點,過點作于點
(1)求點的坐標(biāo);
(2)將沿翻折得到,過點作軸交于點,連接,判斷四邊形的形狀并說明理由.
【答案】(1);(2)四邊形是菱形,理由見解析
【解析】
(1)先根據(jù)A點坐標(biāo)求出反比例函數(shù)解析式,然后證明,利用對應(yīng)邊成比例得到,設(shè),則點在反比例函數(shù)的圖象上,解出t的值,即可得C點坐標(biāo);
(2)連接,交于點,由折疊得到性質(zhì)可得,然后證明,得到AD=EF即可得出四邊形ADFE為平行四邊形,加上對角線互相垂直即可判定為菱形.
解:(1)∵點在反比例函數(shù)圖象上,
∴,即
∵,
∴
∴,
∴,
∴,
∴,
∴,
∴,即,
∴
設(shè),則點在反比例函數(shù)的圖象上,
∴,解得 (舍去),,
∴C點橫坐標(biāo)=1+2×=4,縱坐標(biāo)=
即點
(2)四邊形是菱形.理由如下:
∵將沿翻折得到,
∴,點關(guān)于對稱.
如圖,連接,交于點,則DE⊥AF,.
易證,
∴.
∵,
∴四邊形為平行四邊形,
又∵DE⊥AF
∴四邊形是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1) 若確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,恰好選中乙同學(xué)的概率是 .
(2) 若隨機抽取兩位同學(xué),請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:
(1)求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;
(2)某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
問題情境:已知是正方形的對角線,將直角三角尺放在正方形上.
(1)如圖1,使三角尺的直角頂點與點重合,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.求證:.
操作發(fā)現(xiàn):
(2)如圖2,將三角尺的直角項點放在上,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.判斷和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果公司以22元/千克的成本價購進1000kg蘋果,公司想知道蘋果的損壞率,隨機抽取若干進行統(tǒng)計,部分結(jié)果如下表:
草果總質(zhì)量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質(zhì)量m(kg) | 10.60 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結(jié)果保留小數(shù)點后三位) | 0.106 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
根據(jù)此表估計這批蘋果損壞的概率(精確到0.1),從而計算該公司希望這批蘋果能獲得利潤23000元,則銷售時(去掉損壞的蘋果)售價應(yīng)至少定為_____元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,過點D作DE⊥BC于點E,且∠BDE=∠A.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=16,tanA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.
(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com