【題目】如圖,AB⊥y軸,垂足為B,將△ABO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB1O1的位置,使點(diǎn)B的對應(yīng)點(diǎn)B1落在直線y=﹣ x上,再將△AB1O1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)到△A1B1O1的位置,使點(diǎn)O1的對應(yīng)點(diǎn)O2落在直線y=﹣ x上,依次進(jìn)行下去…若點(diǎn)B的坐標(biāo)是(0,1),則點(diǎn)O12的縱坐標(biāo)為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:
問題發(fā)現(xiàn):學(xué)完四邊形的有關(guān)知識后,創(chuàng)新小組的同學(xué)進(jìn)一步研究特殊的四邊形,發(fā)現(xiàn)了一個結(jié)論.如圖1,已知四邊形是正方形,根據(jù)勾股定理和正方形的性質(zhì),很容易能夠證明.
問題探究:
(1)如圖2,已知四邊形是矩形,若,則的值是 ;的值是 ;
(2)如圖3,已知四邊形是菱形,證明:;
拓廣探索:
(3)智慧小組看了創(chuàng)新小組交流后,提出了一個猜想,如圖4,在中,,你認(rèn)為這個猜想正確嗎?請說明理由;
(4)請用文字語言敘述中得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程.
如圖,已知,∠1+∠2=180°,∠A=∠D.求證AB∥CD.
證明:∵∠1+∠2=180°(已知)
∠1=∠3( )
∴∠3+∠2=180°( )
∴AE∥ ( )
∴∠D= ( )
∵∠A=∠D(已知)
∴∠A=∠CEA( )
∴AB∥CD ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二屆全國青年運(yùn)動會(簡稱:二青會)將于2019年8月在山西太原開幕,甲、乙兩名自行車運(yùn)動員正在積極備戰(zhàn).如圖是教練員記錄的甲、乙兩選手在騎車時(shí),在某時(shí)段速度隨時(shí)間變化的圖象,下列結(jié)論錯誤的是( )
A.乙前秒行駛的路程為米
B.在到秒內(nèi)甲的速度每秒增加米/秒
C.甲、乙到第秒時(shí)行駛的路程相等
D.在至秒內(nèi)甲的速度都大于乙的速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個大矩形按如圖方式分割成九個小矩形,且只有標(biāo)號為①和②的兩個小矩形為正方形.在滿足條件的所有分割中,若知道九個小矩形中n個小矩形的周長,就一定能算出這個在大矩形的面積,則n的最小值是 ( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點(diǎn)坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分別找一點(diǎn)E、F,使△DEF的周長最。藭r(shí),∠EDF=( )
A.αB.C.D.180°-2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,平行四邊形ABCD中,E是BC邊的中點(diǎn),連DE并延長交AB的延長線于點(diǎn)F,求證:AB=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)揚(yáng)州市某風(fēng)景區(qū)的旅游信息,公司組織一批員工到該風(fēng)景區(qū)旅游,支付給旅行社元. 公司參加這次旅游的員工有多少人?
揚(yáng)州市某風(fēng)景區(qū)旅游信息表
旅游人數(shù) | 收費(fèi)標(biāo)準(zhǔn) |
不超過人 | 人均收費(fèi)元 |
超過人 | 每增加人,人均收費(fèi)降低元,但人均收費(fèi)不低于元 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com