【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長),已知計劃中的建筑材料可建圍墻的總長為50m.設(shè)飼養(yǎng)室長為x(m),占地面積為y(m2).
(1)如圖1,問飼養(yǎng)室長x為多少時,占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大,小敏說:“只要飼養(yǎng)室長比(1)中的長多2m就行了.”請你通過計算,判斷小敏的說法是否正確.
【答案】
(1)解:∵y=x =﹣ (x﹣25)2+ ,
∴當x=25時,占地面積最大,
即飼養(yǎng)室長x為25m時,占地面積y最大
(2)解:∵y=x =﹣ (x﹣26)2+338,
∴當x=26時,占地面積最大,
即飼養(yǎng)室長x為26m時,占地面積y最大;
∵26﹣25=1≠2,
∴小敏的說法不正確
【解析】(1)根據(jù)題意用含x的代數(shù)式表示出飼養(yǎng)室的寬,由矩形的面積y=長×寬,列出y與x的函數(shù)關(guān)系式,再將函數(shù)解析式轉(zhuǎn)化為頂點式,即可得出答案。
(2)根據(jù)題意用含x的代數(shù)式表示出飼養(yǎng)室的寬,根據(jù)矩形的面積=長×寬,列出y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)分析即可。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB =24 cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以3cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以5cm/s的速度運動,設(shè)點E運動的時間為t(s).
(1)當點F在線段BC上運動時,CF= cm,當點F在線段BC的延長線上運動時,CF= cm(請用含t的式子表示);
(2)在整個運動過程中,當以點A,C,E,F為頂點的四邊形是平行四邊形時,求t的值;
(3)當t = s時,E,F兩點間的距離最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC,∠ABC的平分線,∠DAC=20,
⑴若∠ABC=60°,求∠EAD的度數(shù);
⑵AE、BF相交于點G,求∠AGB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=﹣ x2+ x+ ,則該運動員此次擲鉛球的成績是( )
A.6m
B.12m
C.8m
D.10m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,M、N分別是BA、CD延長線上的點,∠EAM和∠EDN的平分線交于點F,∠F的度數(shù)為( )
A.120°B.135°C.150°D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為確保信息安全,在傳輸時往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時,則接收方對應收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,4,5.
(1)當發(fā)送方發(fā)出一組密碼為2,3,5時,則接收方收到的密碼是多少?
(2)當接收方收到一組密碼2,8,11時,則發(fā)送方發(fā)出的密碼是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某單位認真開展學習和實踐科學發(fā)展觀活動,在階段總結(jié)中提出對本單位今后的整改措施,并在征求職工對整改方案的滿意程度時進行民主測評,測評等級為:很滿意、較滿意、滿意、不滿意四個等級.
(1)若測評后結(jié)果如扇形圖(圖①),且測試等級為很滿意、較滿意、滿意、不滿意的人數(shù)之比為2:5:4:1,則圖中a= ° ,β= °.
(2)若測試后部分統(tǒng)計結(jié)果如直方圖(圖②),請將直方圖補畫完整,并求出該單位職工總?cè)藬?shù)為 人.
(3)按上級要求,滿意度必須不少于95%方案才能通過,否則,必須對方案進行完善.若要使該方案完善后能獲得通過,至少還需增加 人對該方案的測評等級達滿意(含滿意)以上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖6,已知箭頭的方向是水流的方向,一艘游艇從江心島的右側(cè)A點逆流航行3小時到達B點后,又繼續(xù)順流航行2.5小時后到達C點,總共航行了208千米,已知水流的速度是2千米/時。
(1)求游艇在靜水中的速度。
(2)由于AC段在建橋,游艇用同樣的速度沿原路返回共需多少時間?(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】①
②
③x(x+1)-(x-1)(x+1).
④用簡便方法計算:20192-2018×2020
⑤先化簡,再求值:當x=﹣2,y=3時,求代數(shù)式(y+3x)(3x-y)-(3y-x)(3y+x)的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com