【題目】已知:在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,H是BF的中點.
(1)如圖①,若AB=1,DG=2,求BH的長;
(2)如圖②,連接AH、GH,求證:AH=GH且AH⊥GH.
【答案】(1);(2)詳見解析.
【解析】
(1)先根據勾股定理得出AB,DG,進而求出BF,即可得出結論;
(2)先判斷△ABH≌△MFH,進而判斷出△ADG≌△MFG.即可判斷出△AGM為等腰直角三角形,即可得出結論;
(1)解:∵正方形中ABCD和正方形DEFG,
∴△ABD,△GDF為等腰直角三角形.
∵AB=1,DG=2,
∴由勾股定理得BD=,DF=.
∵B、D、F共線,
∴BF=.
∵H是BF的中點,
∴BH=BF=;
(2)如圖1,延長AH交EF于點M,連接AG,GM,
∵正方形中ABCD和正方形DEFG且B、D、F共線,
∴AB∥EF.
∴∠ABH=∠MFH.
又∵BH=FH,∠AHB=∠MHF,
∴△ABH≌△MFH.
∴AH=MH,AB=MF.
∵AB=AD,
∴AD=MF.
∵DG=FG,∠ADG=∠MFG=90°,
∴△ADG≌△MFG.
∴∠AGD=∠MGF,AG=MG.
又∵∠DGM+∠MGF=90°,
∴∠AGD+∠DGM=90°.
∴△AGM為等腰直角三角形.
∵AH=MH,
∴AH=GH,AH⊥GH.
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,PO交AB于點C,PO的延長線交圓O于點D,下列結論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動點D沿著A→C→B的方向從A點運動到B點.DE⊥AB,垂足為E.設AE長為cm,BD長為cm(當D與A重合時, =4;當D與B重合時=0).
小云根據學習函數的經驗,對函數隨自變量的變化而變化的規(guī)律進行了探究.
下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
補全上面表格,要求結果保留一位小數.則__________.
(2)在下面的網格中建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象.
(3)結合畫出的函數圖象,解決問題:當DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形是平行四邊形,以AB為直徑的經過點D, E是上一點,且.
(1)判斷CD與的位置關系,并說明理由;
(2) 若BC=2 .求陰影部分的面積.(結果保留π 的形式).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,且E為AD的中點,FC=3DF,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為8,求△BEG的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于60元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數關系,部分數據如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數表達式;
(2)求售價為多少元時每天獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某樓盤準備以每平方米15000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發(fā)商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米12150元的均價開盤銷售
求平均每次下調的百分率.
某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:
打折銷售;不打折,一次性送裝修費每平方米250元.
試問哪種方案更優(yōu)惠?比另外一種方案優(yōu)惠多少元?不考慮其他因素
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,利用函數y=x2﹣4x+3的圖象,直接回答:
(1)方程x2﹣4x+3=0的解是 ;
(2)當x滿足 時,函數值大于0.
(3)當0<x<5時,y的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com