【題目】閱讀材料:
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;比如我們通過學習特殊的四邊形,即平行四邊形(繼續(xù)學習它們的特殊類型如矩形、菱形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=AD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
⑴寫出箏形的兩個性質(定義除外);
⑵寫出箏形的兩個判定方法(定義除外),并選出一個進行證明.
【答案】解:(1)
性質1:只有一組對角相等(或者∠B=∠D,∠A≠∠C); …………………………1分
性質2:只有一條對角線平分對角; ……………………………………………………2分
性質有如下參考選項:
性質3:兩條對角線互相垂直,其中只有一條被另一條平分;
性質4:兩組對邊都不平行.
(2)判定方法1:只有一條對角線平分對角的四邊形是箏形;…………………………4分
判定方法2:兩條對角線互相垂直且只有一條被平分的四邊形是箏形;…………………6分
判定方法有如下參考選項:
判定方法3:AC⊥BD,∠B=∠D,∠A≠∠C;
判定方法4:AB=CD,∠B=∠D,∠A≠∠C;
判定方法5:AC⊥BD, AB=CD,∠A≠∠C.
判定方法1的證明:
已知:在四邊形ABCD中,對角線AC平分∠A和∠C,對角線BD不平分∠B和∠D.
求證:四邊形ABCD是箏形.
證明:∵∠BAC=∠DAC,∠BCA=∠DCA,AC=AC,∴△ABC≌△ADC.
∴AB=CD,CB=CD,①…………………………………………………………………8分
易知AC⊥BD.
又∵∠ABD≠∠CBD,
∴∠BAC≠∠BCA,∴AB≠BC.②……………………………………………………10分
由①、②知四邊形ABCD是箏形.……………………………………………………11分
判定方法2的證明:
AC⊥BD,(不妨)BE=DE→AB=CD,CB=CD.AE≠CE→AB≠BC.
判定方法3的證明:
若B、D不是關于AC對稱,則有∠ABD<∠ADB,∠CBD<∠CDB(或反之)→與∠B=∠D矛盾→B、D關于AC對稱→AB=CD,CB=CD. ∠A≠∠CAE→∠BAC≠∠BCA→AB≠BC.
判定方法4的證明:
AB=CD→∠ABD=∠ADB(結合∠B=∠D)→∠CBD=∠CDB →CB=CD.
以下同判定方法3.
判定方法5的證明:對照3和4 的證明.
其他判定方法及證明參照給分.
【解析】略
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,△AOB、△COD是等腰直角三角形,點D在AB上.
(1)求證:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD和△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知O是坐標原點,點A的坐標是(5,0),點B是y軸正半軸上一動點,以OB,OA為邊作矩形OBCA,點E,H分別在邊BC和邊OA上,將△BOE沿著OE對折,使點B落在OC上的F點處,將△ACH沿著CH對折,是點A落在OC上的G點處。
(1)求證:四邊形OECH是平行四邊形;
(2)如圖2,當點B運動到使得點F,G重合時,判斷四邊形OECH的形狀并說明理由;
(3)當點B運動到使得點F,G將對角線OC三等分時,求點B的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm, BC=26cm.,點P從點A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以3cm/s的速度向點B運動。規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動。從運動開始,使PQ=CD,需要經(jīng)過多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某日孫老師佩戴運動手環(huán)進行快走鍛煉,兩次鍛煉后數(shù)據(jù)如下表.與第一次鍛煉相比,孫老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的3倍.根據(jù)經(jīng)驗已知孫老師第二次鍛煉時平均步長減少的百分率小于0.5.
項目 | 第一次鍛煉 | 第二次鍛煉 | ||
步數(shù)(步) | 10000 | ① | ||
平均步長(米/步) | 0.6 | ② | ||
距離(米) | 6000 | 7020 |
注:步數(shù)×平均步長=距離.
(1)求孫老師第二次鍛煉時平均步長減少的百分率;
(2)孫老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結束后又走了500米,使得總步數(shù)恰好為24000步,求孫老師這500米的平均步長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司銷售一種進價為20元/個的計算器,其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:
價格x(元/個) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個) | … | 5 | 4 | 3 | 2 | … |
同時,銷售過程中的其他開支(不含進價)總計40萬元.
(1)觀察并分析表中的y與x之間的對應關系,用所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關知識寫出y(萬個)與x(元/個)的函數(shù)解析式.
(2)求出該公司銷售這種計算器的凈得利潤z(萬元)與銷售價格x(元/個)的函數(shù)解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請寫出銷售價格x(元/個)的取值范圍,若還需考慮銷售量盡可能大,銷售價格應定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com