【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表:
價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬(wàn)個(gè)) | … | 5 | 4 | 3 | 2 | … |
同時(shí),銷售過(guò)程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬(wàn)元.
(1)觀察并分析表中的y與x之間的對(duì)應(yīng)關(guān)系,用所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)寫出y(萬(wàn)個(gè))與x(元/個(gè))的函數(shù)解析式.
(2)求出該公司銷售這種計(jì)算器的凈得利潤(rùn)z(萬(wàn)元)與銷售價(jià)格x(元/個(gè))的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤(rùn)最大,最大值是多少?
(3)該公司要求凈得利潤(rùn)不能低于40萬(wàn)元,請(qǐng)寫出銷售價(jià)格x(元/個(gè))的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元?
【答案】解:(1)根據(jù)表格中數(shù)據(jù)可得出:y與x是一次函數(shù)關(guān)系,設(shè)解析式為:y=ax+b,
則,解得: 。
∴函數(shù)解析式為:y=x+8。
(2)根據(jù)題意得:
z=(x﹣20)y﹣40=(x﹣20)(x+8)﹣40=x2+10x﹣200=(x2﹣100x)﹣200
= [(x﹣50)2﹣2500]﹣200=(x﹣50)2+50,
∵<0,∴x=50,z最大=50。
∴該公司銷售這種計(jì)算器的凈得利潤(rùn)z與銷售價(jià)格x)的函數(shù)解析式為z=x2+10x﹣200,銷售價(jià)格定為50元/個(gè)時(shí)凈得利潤(rùn)最大,最大值是50萬(wàn)元。
(3)當(dāng)公司要求凈得利潤(rùn)為40萬(wàn)元時(shí),即(x﹣50)2+50=40,解得:x1=40,x2=60。
作函數(shù)圖象的草圖,
通過(guò)觀察函數(shù)y=(x﹣50)2+50的圖象,可知按照公司要求使凈得利潤(rùn)不低于40萬(wàn)元,則銷售價(jià)格的取值范圍為:40≤x≤60.
而y與x的函數(shù)關(guān)系式為:y=x+8,y隨x的增大而減少,
∴若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為40元/個(gè)。
【解析】試題分析:(1)根據(jù)數(shù)據(jù)得出y與x是一次函數(shù)關(guān)系,進(jìn)而利用待定系數(shù)法求一次函數(shù)解析式。
(2)根據(jù)z=(x﹣20)y﹣40得出z與x的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解即可。
(3)首先求出40=(x﹣50)2+50時(shí)x的值,從而二次函數(shù)的性質(zhì)根據(jù)得出x(元/個(gè))的取值范圍,結(jié)合一次函數(shù)的性質(zhì)即可求得結(jié)果。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A.同一條弦所對(duì)的兩條弧一定是等弧
B.長(zhǎng)度相等的兩條弧是等弧
C.正多邊形一定是軸對(duì)稱圖形
D.三角形的外心到三角形各邊的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE、CD,F(xiàn)為BE的中點(diǎn),連接AF.
(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5.過(guò)對(duì)角線交點(diǎn)O作OE⊥AC交AD于E,則AE的長(zhǎng)是( 。
A.1.6
B.2.5
C.3
D.3.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在﹣3,0,1,﹣2這四個(gè)數(shù)中,是負(fù)數(shù)的有( )個(gè).
A.1
B.2
C.3
D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的兩邊長(zhǎng)分別為6,11,那么第三邊的長(zhǎng)可以是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:顧客購(gòu)物10元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品(如圖所示).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤 的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1 000 |
落在“鉛筆” 區(qū)域的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆” 區(qū)域的頻率 |
(1)計(jì)算并完成表格.
(2)請(qǐng)估計(jì),當(dāng)n很大時(shí),落在“鉛筆”區(qū)域的頻率將會(huì)接近多少?
(3)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得哪種獎(jiǎng)品的機(jī)會(huì)大?
(4)在該轉(zhuǎn)盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.3a+2b=5ab
B.5x2y﹣4x2y=x2y
C.x2+3x3=4x5
D.5x3﹣2x3=3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com