【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知RtABC6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與RtABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長(zhǎng)是_____

【答案】5

【解析】

根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為12,以及6×6網(wǎng)格圖形中,最長(zhǎng)線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.

解:∵在RtABC中,AC=1,BC=2,

AB=,ACBC=12,

∴與RtABC相似的格點(diǎn)三角形的兩直角邊的比值為12,

若該三角形最短邊長(zhǎng)為4,則另一直角邊長(zhǎng)為8,但在6×6網(wǎng)格圖形中,最長(zhǎng)線段為6,但此時(shí)畫出的直角三角形為等腰直角三角形,從而畫不出端點(diǎn)都在格點(diǎn)且長(zhǎng)為8的線段,故最短直角邊長(zhǎng)應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,

===,

∴△ABC∽△DEF,

∴∠DEF=∠C=90°,

∴此時(shí)DEF的面積為:×2÷2=10,DEF為面積最大的三角形,其斜邊長(zhǎng)為:5

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年春季開學(xué)后,某校制定了《新冠肺炎疫情防控期間就餐規(guī)范》,條例規(guī)定:不對(duì)面就餐、食而不語(yǔ)、錯(cuò)峰就餐、鼓勵(lì)打包等就餐措施.為了解學(xué)生對(duì)規(guī)范的認(rèn)知程度,校園小記者隨機(jī)調(diào)查部分同學(xué),并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)以上圖表,解答下列問題:

1)這次被調(diào)查的同學(xué)共有______人,____________;

2)求扇形統(tǒng)計(jì)圖中B部分所對(duì)圓心角度數(shù);

3)學(xué)校團(tuán)委及政教處準(zhǔn)備對(duì)“不太了解”及“毫不知情”的同學(xué)進(jìn)行再學(xué)習(xí)培訓(xùn),請(qǐng)問我校2400名學(xué)生中預(yù)計(jì)有多少人要接受再學(xué)習(xí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個(gè)數(shù)為

如果圖中的圓圈共有13層,請(qǐng)問:自上往下,在每個(gè)圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,……,則最底層最左邊這個(gè)圓圈中的數(shù)是__________;自上往下,在每個(gè)圓圈中按圖4的方式填上一串連續(xù)的整數(shù)﹣23,﹣22,﹣21,﹣20,……,則所有圓圈中各數(shù)的絕對(duì)值之和為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對(duì)稱軸是直線x=﹣2.拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個(gè)數(shù)有( 。4ab0;②c3a;③關(guān)于x的方程ax2+bx+c2有兩個(gè)不相等實(shí)數(shù)根;④b2+2b4ac

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形中,點(diǎn)為對(duì)角線上一動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),連接,作交射線于點(diǎn),過點(diǎn)分別交,于點(diǎn)、,作射線交射線于點(diǎn)

1)求證:;

2)當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,ACBCm,DAB邊上的一點(diǎn),將∠B沿著過點(diǎn)D的直線折疊,使點(diǎn)B落在AC邊的點(diǎn)P處(不與點(diǎn)A,C重合),折痕交BC邊于點(diǎn)E

1)特例感知 如圖1,若∠C60°,DAB的中點(diǎn),求證:APAC;

2)變式求異 如圖2,若∠C90°,m6AD7,過點(diǎn)DDHAC于點(diǎn)H,求DHAP的長(zhǎng);

3)化歸探究 如圖3,若m10,AB12,且當(dāng)ADa時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置,請(qǐng)直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量一條兩岸平行的河流寬度,三個(gè)數(shù)學(xué)研究小組設(shè)計(jì)了不同的方案,他們?cè)诤幽习兜狞c(diǎn)A處測(cè)得河北岸的樹H恰好在A的正北方向.測(cè)量方案與數(shù)據(jù)如下表:

課題

測(cè)量河流寬度

測(cè)量工具

測(cè)量角度的儀器,皮尺等

測(cè)量小組

第一小組

第二小組

第三小組

測(cè)量方案示意圖

說明

點(diǎn)B,C在點(diǎn)A的正東方向

點(diǎn)B,D在點(diǎn)A的正東方向

點(diǎn)B在點(diǎn)A的正東方向,點(diǎn)C在點(diǎn)A的正西方向.

測(cè)量數(shù)據(jù)

BC60m,

ABH70°

ACH35°

BD20m,

ABH70°,

BCD35°

BC101m,

ABH70°,

ACH35°

1)哪個(gè)小組的數(shù)據(jù)無(wú)法計(jì)算出河寬?

2)請(qǐng)選擇其中一個(gè)方案及其數(shù)據(jù)求出河寬(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94sin35°≈0.57,tan70°≈2.75,tan35°≈0.70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,G是⊙O上兩點(diǎn),且弧AC=弧CG,過點(diǎn)C的直線CDBG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F

1)求證:CD是⊙O的切線;

2)若,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.

車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表

生產(chǎn)零件的個(gè)數(shù)(個(gè))

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?

查看答案和解析>>

同步練習(xí)冊(cè)答案