【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于點(diǎn)E,交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)若PE=2,EF=6,求PC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)PC=4
【解析】
(1)利用菱形的性質(zhì)結(jié)合條件可證明△APD≌△CPD;
(2)根據(jù)全等三角形的性質(zhì)得到∠DAP=∠DCP,根據(jù)平行線的性質(zhì)得到∠DCP=∠F,等量代換得到∠DAP=∠F,可得△APE∽△FPA;
(3)根據(jù)相似三角形的性質(zhì)得到,于是得到PA2=PEPF,等量代換即可得到PC2=PEPF,求得PC=4.
(1)證明:∵四邊形ABCD菱形,
∴AD=CD,∠ADP=∠CDP,
在△APD和△CPD中,
,
∴△APD≌△CPD(SAS);
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥BF,
∴∠DCP=∠F,
∴∠DAP=∠F,
又∵∠APE=∠FPA,
∴△APE∽△FPA,
(3)∵△APE∽△FPA
∴,
∴PA2=PEPF,
∵△APD≌△CPD,
∴PA=PC,
∴PC2=PEPF,
∵PE=2,EF=6,
∴PF=PE+EF=2+6=8,
∴PC=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為建設(shè)天府新區(qū)“公園城市”,實(shí)現(xiàn)城市生活垃圾減量化、資源化、無(wú)害化的目標(biāo).近日,成都市天府新區(qū)計(jì)劃在各社區(qū)試點(diǎn)實(shí)施生活垃圾分類處理活動(dòng),取得市民積極響應(yīng).某創(chuàng)業(yè)公司發(fā)現(xiàn)這一商機(jī),研發(fā)生產(chǎn)了一種新型家庭垃圾分類桶,并投入市場(chǎng)試營(yíng)銷售.已知該新型垃圾桶成本為每個(gè)40元,市場(chǎng)調(diào)查發(fā)現(xiàn),該垃圾桶每件售價(jià)y(元)與每天的銷售量為x(個(gè))的關(guān)系如圖.為推廣新產(chǎn)品及考慮每件利潤(rùn)因素,公司計(jì)劃每天的銷售量不低于1000件且不高于2000件.
(1)求每件銷售單價(jià)y(元)與每天的銷售量為x(個(gè))的函數(shù)關(guān)系式;
(2)設(shè)該公司日銷售利潤(rùn)為W(元),求每天的最大銷售利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒(méi)有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于﹣1.若我們規(guī)定一個(gè)新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個(gè)根為i).并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有運(yùn)算律和運(yùn)算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對(duì)任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( 。
A.0B.1C.﹣1D.i
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象上有一動(dòng)點(diǎn),連接并延長(zhǎng)交圖象的另一支于點(diǎn),在第二象限內(nèi)有一點(diǎn),滿足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)始終在函數(shù)的圖象上運(yùn)動(dòng),,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點(diǎn)G,連接AF,給出下列結(jié)論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+m的圖象經(jīng)過(guò)點(diǎn)P(4,5),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,且S△PAB=10.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)Q使得△PAQ和△PBQ的面積相等?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)A、P、C三點(diǎn)的圓與拋物線交于另一點(diǎn)D,求出D點(diǎn)坐標(biāo)及四邊形PACD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2.
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= ,OC△OA= ;
(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點(diǎn)N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)△AOD是直角三角形且∠ADO=90°時(shí),求α的度數(shù);
(3)當(dāng)α=110°或125°或140°時(shí),判斷△AOD的形狀,請(qǐng)選擇其中一種情況說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com